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Three studies examined whether mathematics can propel the development of physi-
cal understanding. In Experiment 1, 10-year-olds solved balance scale problems that
used easy-to-count discrete quantities or hard-to-count continuous quantities. Dis-
crete quantities led to age typical performances. Continuous quantities caused per-
formances like those of 5-year-olds. In Experiment 2, 11-year-olds solved problems
with feedback. They were encouraged to use math or words to justify their answers.
Children who used math developed an understanding superior to most adults,
whereas children who used words did not. In Experiment 3, 9-year-olds solved prob-
lems with or without prompts to use math. Children encouraged to use math exhib-
ited greater qualitative understanding, even though they were unable to discover met-
ric proportions. The results indicate it is possible to design symbolic experiences to
propel the development of physical understanding, thereby relating developmental
psychology to instructional theory.

Mathematics, diagrams, and other explicit representations help scientists discover
and organize complex empirical relations and this also may be true for the develop-
ing child. The proposal that external representations and organizing activities con-
tribute to development comes from Vygotsky’s (1978) foundational insight that
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cultural forms mediate experience. The following studies examine the significance
of mathematics, a cultural form, in helping children develop complex physical
knowledge about balance. In these studies, mathematics does not help children
learn primitive perceptual categories of causality, such as weight, torque, or bal-
ance. Instead, mathematics helps children structure complex causal relations; for
example, when children need to coordinate multiple parameters of distance and
weight to determine balance.

Research on the development of physical concepts often emphasizes qualitative
physical intuition (e.g., Baillargeon, 1994; Spelke, 2000; Stavy & Tirosh, 2000).
For example, diSessa (1983) argued that people have perceptual primitives, like
springiness and torque. Development involves sorting among the primitives to find
the most general and explanatory. In those accounts that do consider mathematics,
mathematics only lends precision to situations that are previously understood qual-
itatively (e.g., Ahl, Moore, & Dixon, 1992; Dixon & Moore, 1996; Halford, 1993;
Resnick, 1992; White, 1993).

For basic spatial and physical relations, a qualitative understanding that “more X
causes more Y~ may be sufficient (e.g., Dehaene, Spelke, Pinel, Stanescu, &
Tsivkin, 1999; Starkey, 1992). However, the challenge of advanced development
may not involve inducing qualitative relations available to perception (e.g., Spinillo
& Bryant, 1991). Instead, the challenge may involve determining how to structure
the multiple, perceptually distinct parameters of more complex casual situations.
This may be difficult without reliance on cultural tools like mathematics. As the No-
bel physicist Feynman (1965) stated, “it is impossible to explain honestly the beau-
ties of the laws of nature in a way that people can feel, without their having some deep
understanding in mathematics. I am sorry but this seems to be the case” (p. 39).

Cross-cultural work has shown the importance of mathematics for the acquisi-
tion of complex quantitative understanding. Saxe (2001), for example, docu-
mented how the introduction of a cash economy required Papua villagers to adapt
their body-based counting system so that they could reason about addition and
doubling. Those who did not learn to use the new notational system were limited in
their computational abilities. We are unaware, however, of cross-cultural or experi-
mental evidence that shows whether mathematics influences the development of
physical knowledge, and if so, what specific representational properties of mathe-
matics might support this development. In a review of experimental research on
proportional reasoning tasks, Surber and Haines (1987) stated, “The ease with
which a variable can be quantified may influence the strategy subjects employ, es-
pecially when they are on the verge of discovering metric proportions” (p. 37).
They did not provide evidence for this claim or explore its implications for devel-
opment. Similarly Siegler (1981) observed that children seem to use their knowl-
edge about the effects of transformations on number to learn about the transforma-
tions’ effects on liquid and solid quantities” (p. 62). Yet why this would be the case
was not at focus given his emphasis on identifying children’s cognitive structures
rather than the material conditions of their development.
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There are several reasons that the numerical notations and operations of mathe-
matics may cultivate the development of physical understanding. Children perceive
quantities at an early age and, therefore, mathematics may harness a “privileged” do-
main of cognition (Gelman & Gallistel, 1978; Huttenlocher, Jordan, & Levine,
1994). Case and Okamoto (1996), for example, proposed that some perceptually
based mathematical representations, like a number line, tap into central conceptual
structures of magnitude and complement children’s natural mode of thinking and de-
velopment (cf. Ginsburg, 1982). Here, we focus on nonperceptual properties of
mathematics that may support the development of physical understanding.

One property is that the use of mathematics in physical situations presupposes
measurement. Measurement transforms difficult to relate perceptual quantities
into a common numerical ontology that supports precise comparisons and rela-
tions. The weights and distances of a balance scale, for example, involve different
perceptual modalities (haptic and visual), which make them difficult to relate ana-
lytically. However, by converting them both to numerical measures, they can enter
into a relation, as in 2 + 3 or 2 x 3, and children can reason without immediate ref-
erence to different types of perceptual experiences.

A second, related property is what Bruner (1966) called, “compactibility.” Nu-
merals provide a compact representation that can alleviate working memory bur-
dens. For example, when thinking about a balance scale correctly, children need to
combine the weights on each side of the fulcrum and their distances. Numbers can
efficiently represent the relevant quantities, at least compared to maintaining men-
tal images.

A third property is that arithmetic provides familiar structures for organizing
multiple parameters. Addition, subtraction, multiplication, and division provide
ready-made candidates for organizing complexity. For example, Schwartz and
Moore (1998) found that children reasoned proportionally about water and juice
concentrate when the associated numbers were within their arithmetic competence
but not when there were difficult numbers or no numbers at all.

Finally, arithmetic provides a mental technology for trying out different possi-
ble structures. A challenge for learning and development is what to do when one’s
prior knowledge fails. Even if failure is often a precondition of progress, failure
does not include the mechanisms for constructing new knowledge. It is important
to have alternatives that one can try out. For example, imagine a balance scale that
has two stacks of weights on one side and one stack of weights on the other. It is
difficult to infer the operative rule, unless one generates specific values and ex-
plores different arithmetic operations for combining those values. The multiple op-
erations and possible configurations of arithmetic offer a way to explore alterna-
tive structures.

To evaluate the significance of mathematics for the development of physical un-
derstanding, we chose a physical device that has a well-documented progression of
development. These studies used the balance scale task in which children decide if
a beam will tilt left, right, or balance given the placement of weights on either side
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of the fulcrum. Our strategy was to show that mathematics leads to greater devel-
opment as measured by performance on the balance scale task, and given that evi-
dence, to look more closely at the children’s reasoning to discern why mathematics
made a difference.

There are multiple characterizations of the developmental plateaus revealed by
the balance scale (e.g., Case, 1985; Metz, 1993; Piaget, 1954; Surber & Haines,
1987). However, the goal here is not to characterize the many ways children can
(mis)understand the balance scale. Instead, the goal is to document the value of
mathematics for propelling cognitive change, whatever the ultimate internal form
may be. Siegler’s (1981) widely adopted rule levels provided a parsimonious marker
of developmental change. These rules characterize the child’s ability to attend to and
coordinate two relevant dimensions of information, distance, and weight. At Rule 0,
children guess at random, unable to coordinate even within a single dimension. At
Rule 1, children pay attention to weight exclusively and therefore make mistakes
when the distances are unequal. AtRule 2, children pay attention to the distances but
only if the weights are equivalent. If the weights differ, they ignore the distances. At
Rule 3, children attend to both weight and distance. They no longer have a weight
bias. They correctly reason when the weights or distances (or both) are equal but
when the weights and distances both differ, they “muddle through” the problems, of-
ten operating at chance. Finally, at Rule 4, children apply metric proportional rea-
soning and compare the ratios of weight and distance.

We conducted three studies with 9- to 11-year-olds. One can anticipate their
rule levels without any interventions by looking at Table 1, which shows the distri-
bution of rule levels by age as found in Siegler’s (1981) original sample. Our first
experiment hindered the application of mathematical knowledge by making it dif-
ficult for children to measure the weights and distances. The children should do
worse than their age-level norms. The second and third experiments encouraged
children to use mathematics to justify their answers to help learn about the balance
scale. The children should do better than their age-level norms. In addition, in the

TABLE 1
Age Norms for Rule Attainment (Adapted from Siegler, 1981)

Percentages of Children at Each Rule Level

Age Rule 0 Rule 1 Rule 2 Rule 3 Rule 4
5 years 5% 85% 5% 5% —
8 years — 10% 35% 45% 10%
12 years 10% — 15% 60% 15%
Adult — — 5% 65% 30%

Note. AtRule0, children guess. AtRule 1, children only pay attention to weight. At Rule 2, chil-
dren pay attention to distance, when weights are equal. At Rule 3, children always pay attention to
weight and distance but perform at chance when both distances and weights differ. At Rule 4, children
solve all problems correctly.
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latter two experiments, we examined children’s explanations. These explanations
help reveal why mathematics can support development, and their analyses may of-
fer the most important contribution of this work.

EXPERIMENT 1

In this study, we made it difficult to measure the relevant parameters of the balance
scale. We predicted this would make the children less likely to consider weight and
distance simultaneously. Children completed paper-and-pencil balance scale prob-
lemsinone of two conditions. In the baseline peg condition, children solved standard
problems that showed discrete quantities of weight and distance. In the beaker condi-
tion, children solved identical problems, except that the quantities were continuous.
We assumed that the continuous quantities would be difficult to measure and enu-
merate in symbolic form and this would block the use of mathematical representa-
tions. Prior research documents children’s difficulty with mass quantities compared
to count quantities. Nevertheless, it seemed worth starting with a simple but untested
instance of problem solving with mass quantities in the context of our account.
Figure 1 provides examples from the two conditions. The peg condition por-
trayed a balance scale with four pegs per side and a maximum of three weights per
peg. The beaker condition used two beakers, each filled to one of three levels to in-
dicate weight. The beakers rested at the same four distances as the peg condition,
though the distances were unmarked. Children chose from three options to predict

Diagnostic Beaker Condition Peg Condition
Responses Hard to measure quantities Easy to measure quantities

Correct:

“Falls Left” 1 1 L I I I I Ja I I

Weight Bias: A
“Balance”

Correct:

¥ I LLll&]]]
A A

Weight Bias:
“Falls Right”

Correct:

“Falls Right i Wl 111
Weight Bias: A A
“Falls Left”
FIGURE 1 Three types of problem used to assess child understanding. For each problem, the

correct answer conflicts with an answer that only considers weight. Children either solved prob-
lems involving hard-to-measure, continuous quantities or easy-to-count, discrete quantities.
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what would happen to the scale once it was free to move: fall down to the left, fall
down to the right, balance.

We designed the problems to assess whether the children reasoned about both
the weight and distance dimensions, or if they reasoned only about weight, which
we will call a “weight bias.” There were three problem types.

1. Same weights at different distances: The top of Figure 1 shows this problem
type. Children with a weight bias give a balance response because there are equal
weights (Rule 1). More sophisticated children use the different distances to cor-
rectly predict the direction of tilt (Rule 2 and up).

2. Different weights at different distances that balance: The middle of Figure 1
shows this problem type. Children who cannot solve the first problem type avoid a
balance response for this problem because there are different amounts of weight.
They predict a tilt to the side with the more weights (Rule 1). Even children who
can solve the first problem type may predict a tilt to the side with more weights be-
cause the use of unequal weights increases problem complexity and leads them to
disregard distance (Rule 2). More sophisticated children who consider both weight
and distance are willing to predict balance, though at chance levels (Rule 3), unless
at the most advanced level (Rule 4).

3. Different weights at different distances that tilt toward less weight: Children
should behave similarly to the second problem type.

Our prediction was that children in the beaker condition would be correct less
often and exhibit more of a weight bias. Without access to measurement and the
symbols of mathematics, beaker children would have to coordinate differences in
weight and distance qualitatively, which we propose is difficult to do.

Method

Participants. Two classes of beginning 5th-grade children in suburban Ten-
nessee participated (M = 10.7 years, SD = 0.50). Of those children, 33 returned per-
mission slips that allow us to report their results, 19 in the beaker condition and 14
in the peg condition. There were 17 girls and 16 boys, equally distributed except
one.

Design. Children were randomly assigned to a condition. For each of the
problem types previously described, children were supposed to solve four separate
instances. Due to experimenter error, the beaker condition included five instances
of the third problem type (different weights and distances that tilt to less weight).
There were no discernible consequences, and otherwise, children solved four in-
stances for each problem type.
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Procedures. Each teacher received equal numbers of peg and beaker packets
randomly mingled in a single stack. The teacher handed out the packets, which the
children completed individually as seatwork. Each randomly ordered page had a
single problem. For the peg condition, there were 12 problems, plus 4 filler prob-
lems. For the beaker condition, there were 13 problems, plus 3 filler problems. A
coversheet showed a problem with equal weights (or equally filled beakers) at
equal distances from the fulcrum. The instructions described the balance scale and
told the children their task was to predict whether the scale would balance, fall
down to the left, or fall down to the right. The instructions stated that the correct
answer to the sample problem was balance and that the children should circle one
of the three choices for the subsequent problems.

Results

An alpha level of .05 was used throughout for all statistical tests.

Figure 2 indicates that the beaker children performed worse than the peg chil-
dren did. The top panel shows the mean percentage of correct answers for each
of the three problem types. The bottom panel shows the mean percentage of
weight-biased responses. The correct responses help indicate whether children
focused solely on the weights because correct answers directly competed with
weight-biased answers. The weight-biased responses also help indicate whether
children focused solely on weight because an incorrect response could be
weight-biased. The peg children were correct more often and less biased across
the three problem types.

For each child we found the percentage of correct responses and the percentage
of biased responses for each of the three problem types. This created six
within-subjects measures (see Figure 2). Condition was a between-subject factor.
Using a multivariate analysis of variance (MANOVA), there was a significant ef-
fect of condition, F(6, 26) =2.73, 12 = 0.63. Within the umbrella of the MANOVA,
we compared the two conditions on each measure for each problem type. Figure 2
indicates significant condition effects with asterisks. For the problems with equal
weights at unequal distances from the fulcrum, the beaker children made fewer
correct “tilt” answers than the peg children, F(1,31) =5.9, MSE = 0.14, and more
weight-biased “balance” answers than the peg children, F(1, 31) = 4.8, MSE =
0.14. Thus, the beaker children ignored the distance dimension. For the problems
with different weights and distances that balanced, the beaker children were cor-
rect less often than the peg children, F(1, 31) =7.7, MSE = 0.04. The beaker chil-
dren had difficulty reasoning how different weights could balance. However, in-
correct peg children were also inclined to use a weight-biased answer, and there
was not a significant difference in the percentage of weight-biased responses, F(1,
31)=2.2, MSE =0.12, p < .15. For the remaining problem type (different weights
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PERCENTAGE OF CORRECT ANSWERS

Problem Type

Same Weight Different Weight Different Weight

“Tilt Left” “Balance” “Tilt Left”
Condition M SD M SD M SD
Pegs 60.7*% (.42) 25.0% (.27) 32,1 (.33)

Beakers 289 (33) 052 (.12) 287 (26)

PERCENTAGE OF WEIGHT-BIASED ANSWERS

Problem Type

Same Weight Different Weight Different Weight

“Balance” “Tilt Right” “Tilt Right”
Condition M SD M SD M SD
Pegs 32.1% (.40) 57.1 (.37) 57.1 (.31)

Beakers 605 (35) 754 (33) 68.2 (.29)

Note: Asterisk (*) indicates significant difference between conditions.

FIGURE?2 The mean percentage of correct responses and weight-biased responses broken out
by condition and problem type. The top of each table displays a representative of each problem
type plus answers in quotations that are correct (top panel) and weight-biased (bottom panel).

and distances that tilt toward less weight), there were no significant differences be-
tween conditions (Fs < 1.0).

To coordinate these findings with other research, we reassess the results as rule
levels. Few children were 100% consistent with one rule across the problems, as
might be expected in a whole-class, paper-and-pencil task. If we required 100% con-
sistency, six children could be assigned to arule. However, ata 75 % fit, all of the chil-
dren could be assigned. For example, children at Rule 1 had to exhibit a weight bias
for (a) atleast three of the four problems with equal weights at different distances and
(b) 75% or more of the remaining problems. For the beaker condition, the frequen-
cies were as follows: Rule 1 =68%, Rule 2=22%, Rule 3 =5%, Rule 4 =5%. For the
peg condition, the frequencies were: Rule 1 =29%, Rule 2 = 43%, Rule 3 = 14%,
Rule 4 = 14%. The beaker condition is significantly below the peg condition in a
one-tailed test, x2(3, N=33)=6.6,p=<.05. The beaker children were also further be-
low their age norms than the peg children (refer to Table 1), though this comparison
should be interpreted in light of our imperfect assignment to rule level.
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Discussion

Children in two conditions received isomorphic problems. The peg condition used
discrete quantities. The beaker condition used continuous quantities. Children in
the beaker condition exhibited less developed physical reasoning. We hypothesize
that the beaker children did not measure the quantities into precise values that or-
ganized the weights and distances into a common ontology (number), and there-
fore, they had difficulty representing and coordinating the amounts. Given that
they did not apply a preformed schema to these problems, they needed to reason
with perceptual magnitudes. When perceiving differences on the weight dimen-
sion, they stopped looking at the distance dimension and they exhibited a weight
bias. It is difficult to maintain a perceptual representation with sufficient precision
to coordinate thinking about forces interacting at a distance from each other
(Schwartz & Black, 1996). The results, however, are merely consistent with this
hypothesis and do not prove it. Thus far, we have shown only that physical situa-
tions that are difficult to measure lead to poorer performance. In the following
studies, we look for direct evidence that the conversion into numbers helps chil-
dren consider the complex relations within a physical problem.

An alternative hypothesis is that the beaker children had difficulty perceiving
the differences in the quantities. For example, the children may have been unable
to see that the beakers had different amounts of water. This alternative has limited
appeal. The children discerned the quantities in the beakers because they answered
based on their equivalence or difference (i.e., the weight bias). With regard to dis-
tance, some problems made the differences pronounced (e.g., fourth position on
the left side vs. first position on the right side). The beaker children did not improve
on these problems. Also, 32% of the beaker children used the distances at some
point in their thinking (Rule 2 or better) and it is difficult to fathom why the other
68% would have less perceptual acuity. Instead, it seems that the beaker children
could perceive the relevant differences but they could not measure them with suffi-
cient precision to coordinate the two dimensions of perceptual information sym-
bolically and keep them in mind. Without measurement into numbers, they ig-
nored distance in their reasoning.

EXPERIMENT 2

Experiment 1 tested the prediction that when it is more difficult to use mathe-
matics, children will exhibit less advanced understanding. Experiment 2 tested the
hypothesis that when children are encouraged to use mathematics, their under-
standing will become more advanced. The central manipulation was that children
in the explain condition were encouraged to justify their answers in words,
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whereas children in the math condition were encouraged to justify their answers
using mathematics.

To implement the experiment and give the children a chance to further their un-
derstanding, we developed the software shown in Figure 3. Each row of the inter-
face presents increasingly difficult problems. When children clicked on a problem,
they received a screen that enlarged the problem and required children to choose
from: falls down to the left, balances, falls down to the right. Beneath the choices
was a first-try “justification” box that implemented the major difference between
the conditions. For the explain condition the justification box stated, “Explain your
answer.” For the math condition it stated, “Show your math.” The system did not
interpret the justifications. If children made a wrong choice, they simply received
the correct answer, and then they had a chance to make a second-try justification

Taking Test

FIGURE 3 The at-a-glance interface children used to work on balance scale problems. (All
problems used weights and pegs.) Children selected a problem, predicted its behavior, and justi-
fied their answers using words or math. The interface updated after each prediction to show the
correct answer and the child’s accuracy. In this example, the child has answered problems in the
first two rows and made one correct answer in each case.
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for why this answer was correct. After each problem, the system returned to the
main interface. The interface showed the correct behavior of the scale, it colored
the square green or red to indicate the correctness of the child’s initial choice, and it
showed the first-try justification (removed from the figure for legibility). The hope
was that the interface would help children induce patterns and learn.

Before using the system, the explain and math children received brief on-line
examples of what it means to explain or use math to justify an answer. These exam-
ples did not use a balance scale. The math children also received instruction on
how to count (i.e., measure) the elements of the balance scale. The goal was to
maximize the effect of using mathematics to determine whether and how it can
propel development. In Experiment 3, these extra supports were removed to ensure
that our training was not the sole reason that mathematics helped.

The children’s understanding was evaluated in individual exit interviews.
Children solved a new set of balance scale problems and explained their reasoning.
To ensure the math children had not simply stumbled onto a successful formula
without physical understanding, all children also solved two new kinds of prob-
lems shown in Figure 4. For a physical model problem, the balance scale was miss-
ing one of the pegs. If the children blindly apply a formula without physical under-
standing, they disregard the distance and simply count the number of pegs. For a
transfer problem, the scale had weights on three pegs. For the example in Figure 4,
the correct answer is “balance” and the math is: 2 x4 =(2 x 1) + (3 x 2). We did not
expect children to find the correct answers; they had no exposure to the behavior of
these systems and they did not receive feedback. We explicitly created a problem
for which the children would not have a formulaic answer and they would have to
reason about the physics of a new situation. If the math children exhibited ad-
vanced reasoning for the transfer problem, it would show that the use of mathemat-
ics had given them a deeper understanding, even when they could not use mathe-
matics to derive a correct answer.

Overall, we expected the math children to show more advanced rule levels for
the standard balance scale task and to exhibit more complex thinking for the trans-
fer problems. Given this result, we also expected their typed justifications to yield
evidence for how mathematics helped the children learn about the balance scale.

Transfer Problem Physical Model Problem

dllll Ll

FIGURE 4 Problems used to determine if children reasoned about a physical device and
whether they could transfer their learning to a more complex problem. To reason physically
about the problem on the right, children had to consider distance (or the weight of the missing
peg) instead of blindly count pegs. Transfer problems included weights on three pegs to deter-
mine if children reasoned about weight and distance for novel, complex problems.
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These latter data were analyzed post hoc, so we defer further explanation to the Re-
sults section.

Method

Participants. Four new 5Sth-grade classrooms in suburban Tennessee partici-
pated at the end of the school year (M = 11.3 years, SD = 0.54). Children were ran-
domly assigned to the explain (n = 29) and math (n = 30) conditions. There were 30
girls and 29 boys, equally distributed except one. A subset of 51 children com-
pleted the transfer task: 26 and 25 for the explain and math conditions, respec-
tively.

Design. The explain and math conditions comprised the only factor. The
study included three a priori dependent measures. One measured which of the four
rule levels children exhibited at posttest. Another tested whether children simply
counted pegs without reference to their relative distances. The third measured
whether children transferred their learning to three problems that included weights
on three pegs. Post hoc analyses characterized child justifications during learning.

Procedure. Each class had four computers. Children participated when a
computer became available. Once seated, a child received an online introduction.
The introduction began with an image of a balance scale and stated the children
would solve problems about a balance scale like the one in the picture. The next
page stated they would have to justify their answers. To give examples of what this
meant, children saw two graphically presented problems in turn. One problem
asked who had more total candy given groups of red, blue, and green candies. The
other problem asked who would win a race given different speeds and starting po-
sitions. For each problem, children read two different examples of justifications.
The explain condition used qualitative verbal justifications. For example, “Ben has
more for two types of candy, but Mike has more types of candy. Mike has more.”
The math condition provided examples of mathematical justifications. For exam-
ple, “Mike: 4 +4 +4=12. Ben: 5+ 5=10. 12 is more than 10. Mike has more.” The
sample math justifications were not analogous to the justifications children used
for the balance scale. The introduction for the math condition also included a final
page that showed how to measure the balance scale. To show how to count dis-
tance, the screen displayed numbers above the pegs (i.e.,432 11l 1 2 3 4). To show
how to count weight, the screen displayed numbers with arrows pointing to each
weight’s position in its stack (i.e., bottom weight equals 1, next weight up equals 2,
etc.). The example did not show how to use the numbers.

After completing the introduction, children completed the learning phase previ-
ously described (approximately 30 min). The system (Figure 3) permitted children
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to select uncompleted problems from the visual interface and provided feedback
on the accuracy of their multiple-choice answers, but not their justifications.

After the learning phase, children moved to a separate location for an
audiotaped interview. The interviewer asked each child to answer and explain
three new balance scale problems that were of the three types used in Experi-
ment 1. These problems were used to locate a child’s rule level (see Introduction
to Experiment 1). A risk, however, was that children who were at Rule 3 could
choose the correct answers by chance (unlike children at Rule 1 or 2, who
choose weight-biased answers). To address this limitation, the interviewer used a
fourth and fifth problem for children who correctly answered all the problems
but would not explain how. This reduced the odds of mistakenly coding children
at Rule 4 when they were really at Rule 3. The interview ended with the physical
model problem (right side of Figure 4). Children who only counted the visible
pegs to reach an answer apparently did not view the pegs as markers of distance.
Children had to count the missing peg as though present or comment on the
change in weight due to the peg’s absence to get credit for treating the scale as a
physical system.

After all the children completed the interview, the classes completed three
transfer problems as paper-and-pencil seatwork (left side of Figure 4). For one
problem, the scale tilts to the side with more total weights; for another, it tilts to
the side with the maximum distance; and for another, it balances. Children cir-
cled their answers from the usual three choices. Children who only use weight
always predict that the beam tilts to the side with more total weight for all three
problems. Children who only use distance always predict a tilt to the side that
has the weights the farthest out. Children who consider both dimensions predict
at least one scale tilts toward more weight and one scale tilts toward more dis-
tance or choose balance.

Results

The interview included the physical model problem to determine if children were
simply “pushing numbers.” Two math children were caught by this trap question
compared to zero explain children. We exclude them from the following analysis
because their physical understanding is unknown. One math child developed an al-
gorithm that added the pegs and weights on each side of the fulcrum (cf. Case,
1985). This solution, though not described by Siegler (1981), was counted as Rule
3 because the child considered both dimensions when the weights and distances
were unequal.

Figure 5 shows that the math children exhibited higher rule levels than the ex-
plain children in the exit interview, x2(3, N = 57) = 15.6, p = <.01. For the math
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condition, the mean Rule level was 3.4 (SD = 0.68), and for the explain condition,
2.7 (SD = 0.65). The difference is reliable; F(1, 56) = 13.0, MSE = 0.44.

The math children also did better on the transfer problems that used weights on
three pegs. The percentage of children who considered both dimensions was 93%
for the math condition and 36% for the explain condition. A revealing comparison
includes only children who exhibited Rule 3 or better on the standard balance scale
problem. Of those who completed the transfer task, there were 25 in the math con-
dition and 20 in the explain condition. Of these children, 96% of the math children
considered both dimensions compared to 65% of the explain children, ¥2(1, N =
45) =17.3, p = <.01. Thus, even though these explain children considered both di-
mensions for the original balance scale problem, many regressed to using a single
dimension on the transfer problem.

The justifications during the learning phase suggest how mathematics helped.
The children’s justifications were coded post hoc for telling features. Two of the
coding schemes required subjective agreement: The number of dimensions a child
considered in a justification (weight or distance) and the number of distinct ways a
child tried to compare and combine the information. The schemes are detailed in
the following paragraphs. To ensure the reliability of each coding scheme, a pri-
mary coder worked with all the data and a secondary coder worked with a random
25% sample. In this study and the next, there was perfect agreement on the dimen-
sions of information a child considered for each justification. The raters’ tallies of
the number of distinct ways each child combined the information were highly cor-
related for both studies (r = .95).
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First, we report how the children from both conditions had similar opportunities
to learn. The groups made similar efforts to justify their first answers for each
problem. The math and explain children typed relevant entries for 98% and 93% of
the problems, respectively. A relevant entry included a reference to the balance
scale, as opposed to blank entries; random typing; and comments like, “I hate this.”

Children from the two groups made roughly the same number of errors leading
to corrective feedback (math M = 4.3, SD = 2.8; explain M = 5.3, SD = 2.0). The
math children did not exhibit greater accuracy, because they were exploring how to
solve the problems (see following) and often did not reach insight until the end.

Finally, we examined whether the children noted the weight and distance for
each problem. A weight-only coding reflected when a child only referred to the
weights in a justification (e.g., “more weight on the right” or “3 < 4”). A dis-
tance-only coding reflected attention to only distance (e.g., “father out on right” or
“1 < 4”). Both distance and weight reflected when a child referred to both weight
and distance in a single justification (e.g., “less weight but farther out,” “3 x4 > 2 x
17). To determine if children noticed both dimensions, we found the percentage of
children who used both a justification that considered distance and a justification
that considered weight across the problems. The math and explain children both
considered the weights and distances, (90% and 93%, respectively), though not
necessarily for the same justification.

The children from both conditions noticed the weight and distance dimensions
and they made good faith efforts with the task and feedback. However, there were
telling differences in their justifications. For example, all but one math child used
digits (e.g., “3”), whereas 83% of the explain children exclusively used words
(e.g., “three”).

More important, children in the math condition considered more dimensions in
a single justification. Previously, we noted that most of the children considered the
weight dimension and the distance dimension when collapsing across different
problems. Here, the analysis focuses on how many dimensions they incorporated
into a single justification. For the math condition, 68% of the children had at least
one justification that included both dimensions compared to 19% of the explain
children, y2(1, N=359) = 14.2, p <.01. In contrast, the math children frequently in-
cluded all the parameters of both dimensions, even if they did not use them cor-
rectly, as in the case of one child who wrote, “3x3-1=2-1=19-1=8"

A second striking difference involved the exploration of new structural opera-
tions. We counted the number of times each child explored a new approach to solv-
ing the problem. A child took a new approach when she or he made a qualitative or
quantitative comparison that combined or related the values in a new way, regard-
less of the specific parameters. For example, an explain child said, “greater
weight” on one answer and “greater distance” on another. These are the same oper-
ation because they both use a qualitative subtraction (or comparison of magni-
tudes), even though they used different dimensions. In contrast, another child
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wrote, “more distance on the left,” and then on a subsequent problem switched to
“distance and weight make more on the left.” The aggregation of weight and dis-
tance is a new operation. An example of multiple operations for the math condition
comes from a child who began by subtracting the weights from the distances, then
tried adding them, and then finally discovered that multiplication worked. Across
the full problem set, explain children explored a new operation that differed from
their initial operation an average of 0.3 times (SD = 0.5). Typically, when explain
children were wrong and wrote a second-try justification, they simply highlighted
the alternative dimension rather than trying a new operation (e.g., first justifica-
tion: “more on the left,” second justification: “farther on the right). In contrast, the
math children tried 1.6 (SD = 1.6) new operations on average (excluding two chil-
dren who discovered the correct solution immediately). The difference is reliable,
F(1,56)=16.7, MSE = 1.3.

The exploration of new operations did not guarantee productive paths, however.
For instance, one child began with “3 x 4 = 12” on one problem and concluded
with “4 x4 =16 + 5 = 21" on the last problem.

Discussion

Children in the explain and math conditions received balance scale problems with
feedback organized to maximize their chances of inducing the patterns of behav-
ior. Even so, the children who were told to explain their understanding without
constraint did not induce the underlying physical rule as well as children who were
told to use mathematics in their explanations. Given the opportunity to use the
symbol system of mathematics, the math children developed a superior physical
understanding.

Evidence from the justifications indicated that the math children represented
more of the problem parameters simultaneously and in comparable numerical for-
mats. The explain children tended to switch between distance and weight rather
than represent them simultaneously. Moreover, mathematics provided the children
with a set of operators for combining the parameters in new ways. Coupled with
the ease of keeping the four parameters in the mix, the operators allowed children
to explore different structures that often led to a new way to understand the balance
scale.

One alternative interpretation of the results is that the mathematics supported
a syntactic trial and error that stumbled onto the correct answer. This did occur
for two children who found the correct solution without understanding the phys-
ics of the problem. This documents a pitfall of mathematics; people can use al-
gorithms without understanding the situation to which the algorithms apply (a
well-known failing of much school-based instruction). Yet at the same time, this
finding reveals the power of mathematics because these two children were able
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to invent a successful structure based on patterns, something the explain children
did not do. More generally, the math children were attentive to the physics of the
problem as indicated by their ability to reason about a problem that omitted a
peg. In addition, they transferred their understanding to a new problem with
weights on three pegs. The math children considered both weight and distance,
whereas the explain children only considered a single dimension for these more
complex problems.

A second alternative interpretation is that the instructions in the math treat-
ment helped the children consider both dimensions by showing how to count
pegs and weights. Siegler (1976), for example, showed that increasing the sa-
lience of the distance dimension helps younger children move from Rule 1 to
Rule 2. By 10 years, however, children already attend to both dimensions when
the weights are equal (assuming they are enumerable—see Experiment 1). The
difference between the conditions was not whether the children noticed both di-
mensions; showing children how to count did not give the math children an un-
fair advantage that way. Rather, the difference between the conditions was in
how the children used those dimensions. The explain children considered each
dimension in turn, for example by stating that one side had more weight, and
then on negative feedback, stating the other side had more distance. In contrast,
the math children incorporated weight and distance into a single structure rather
than successive answers.

EXPERIMENT 3

The next experiment tested whether the results of Experiment 2 would replicate
with two modifications to ensure that we did not give the math children an unfair
advantage. First, we removed the introduction that included sample justifications
and counting instructions. We simply told the children that they had to invent math
or use words to justify their answers. Second, we used a younger population. Rule
4 reasoning requires the use of mathematics, which is the level at which the math
condition showed its greatest advantage in Experiment 2. A useful demonstration
would show that mathematics also provides an advantage for qualitative reasoning
(e.g., Rule 3) that falls short of full-blown, metric proportional reasoning. To make
this demonstration, we involved younger children who were old enough to know
arithmetic but were unlikely to discover the multiplicative relation. Our prediction
was that the math children would still outperform the explain children, even
though few would reach Rule 4. In this case, mathematics would help them con-
sider and relate both dimensions simultaneously (Rule 3), and again, the justifica-
tions would help indicate why.
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Method

Participants. Two 4th-grade classrooms from a semi-urban, California
school participated at the end of the school year (M = 9.1 years, SD = 0.46). There
were 23 girls and 22 boys, randomly assigned to conditions (explain n =23, math n
= 22) in nearly equal proportion.

Design and procedure. Children were randomly assigned to the explain
and math conditions. Besides age, the major difference from Experiment 2 was
that the children did not receive instructions or examples on how to count, use
math, or explain their justifications. Instead, the introductory phase simply intro-
duced the balance scale problem and stated that they would have to use math or
words to justify their choice for what it would do. Another difference was that the
children solved the transfer problems in the interview.

Results

Figure 6 indicates the math children performed at higher rule levels in the exit in-
terview than the explain children, x2(1, N = 45) = 9.4, p = <.01. The average rule
level of the math condition (M =2.9, SD =0.71) was greater than the explain condi-
tion (M = 2.3, SD =0.77), F(1, 43) = 6.4, MSE = 0.55. The math children rarely
reached Rule 4. In the exit interview, none of the children used explicit calculations
to solve the problems. Combined, these results suggest that the math children’s ad-
vantage was not based on a specific mathematical procedure. Math simply led the
children to consider both dimensions of the problem more frequently. No child in
either condition fell for the trap question that tested whether they blindly counted
pegs.

Like Experiment 2, the math children exhibited superiority on the transfer prob-
lems. In this study, we administered the transfer problems during the exit inter-
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view. This permitted us to differentiate three levels of sophistication on the transfer
problems. Children considered only one dimension across transfer problems (math
=36%, explain = 70%); two dimensions across problems (math = 18%, explain =
9%), or two dimensions within the same problem as indicated by explanations that
incorporated both dimensions (math = 45%, explain = 22%). The predicted advan-
tage of the math condition is reliable, (1, N=45) = 5.1, p = <.05. When limiting
the analysis to children who achieved Rule 3 or higher on the original problems
(math n = 19, explain n = 11), 68% of the math children considered both dimen-
sions compared to 54% of the explain children. The difference is not significant.

As in Experiment 2 children in both conditions made good efforts with the task
and feedback, and they were attentive to both weights and distances, at least across
problems in the learning phase. The children had similar error rates during learn-
ing, math (M = 6.2, SD = 2.3), explain (M = 5.7, SD = 2.2). All but one child en-
tered meaningful justifications for each of the problems. Finally, 73% of the math
and 83% of the explain children considered both dimensions across problems.

The telling differences between the conditions were similar to Experiment 2.
Although not significant, 50% of the math children explicitly considered all four
parameters of weight and distance at least once within a justification compared to
30% of the explain children. The math children also entertained an additional 1.2
(SD = 1.6) operations beyond their first solution, whereas the explain children con-
sidered none; F(1,43)=13.5, MSE = 1.25. Every single explain child used a quali-
tative subtraction structure for every single answer they justified.

Discussion

Conditions that facilitated the application of mathematics led to improved learning
about the balance scale, even when there were no special instructions or examples.
The math children were more likely to consider weight and distance simulta-
neously than the explain children, even though few math children had a successful
procedure for combining those dimensions of information. In this light, the math
helped the children develop a superior “qualitative” understanding. The justifica-
tions during learning again suggested two benefits of math: (a) a 20% gain in chil-
dren who considered both dimensions simultaneously and (b) a twofold increase in
the number of structures entertained for organizing those dimensions.

GENERAL DISCUSSION

Empirical Summary

Three studies demonstrated the value of number and mathematics for 9- to
11-year-old children’s development of physical understanding of the balance
scale. Table 2 shows the relative performance of children from each condition
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TABLE 2
Experimental Results Merged Into Siegler’s (1981) Original Findings

Percentages of Children at Each Rule Level

Condition Age Rule 0 Rule 1 Rule 2 Rule 3 Rule 4
— S years 5% 85% 5% 5% —
Beakers 10 years — 68% 22% 5% 5%
Pegs 10 years — 29% 43% 14% 14%
— 8 years — 10% 35% 45% 10%
Explain 9 years — 17% 35% 48% —
Explain 11 years — 7% 20% 70% 3%
— 12 years 10% — 15% 60% 15%
Math 9 years — 9% 5% 77% 9%
— Adult — 5% 65% 30%
Math 11 years — 4% — 45% 51%

Note. Labelled conditions introduce results from Experiments 1 to 3. At Rule 0, children guess.
At Rule 1, children only pay attention to weight. At Rule 2, children pay attention to distance, when
weights are equal. At Rule 3, children always pay attention to weight and distance but perform at
chance when both distances and weights differ. At Rule 4, children solve all problems correctly.

when incorporated into Siegler’s (1981) original norms. In Experiment I,
10-year-old children who reasoned about hard-to-measure, continuous quantities
in the beaker condition performed close to the level of 5-year-olds. Children who
completed a standard peg and weight version of the task reasoned closer to their
age-norms. In Experiment 2, 11-year-old children received feedback on the accu-
racy of their predictions across multiple problems. The math children saw how to
measure the system and were encouraged to use math to justify their answers. They
developed an understanding superior to many adults. Children in the explain con-
dition received equivalent feedback but no instructions for how to measure the sys-
tem or use math in their justifications. Their resultant understanding of the system
was below that of the math children. In Experiment 3, 9-year-old children did not
receive any instruction for how to measure the system or justify their answers, but
otherwise replicated the protocol of Experiment 2. Children in the math condition
again exceeded their age norms, though they did not learn to solve the problem
mathematically. The math children considered weight and distance simulta-
neously more frequently than the explain children. The math children in Experi-
ments 2 and 3 did not simply find a way to “push numbers.” When the device
changed to include weights on three pegs, the math children adapted their reason-
ing and continued to exhibit superiority over children in the explain conditions. In
combination, these results support the claim that mathematics can propel the de-
velopment of physical understanding in children.

Numbers and mathematical operations offered several helpful representational
features. In Experiment 1, the children in the beaker condition could have used or-
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dinal relations (i.e., more and less) to reason at the same level achieved by the chil-
dren in the peg condition but they did not. Our a priori hypothesis was that the con-
tinuous quantities of the beaker condition would be difficult to measure, which in
turn, would make it difficult to think simultaneously about weight and distance. In
addition to reducing working memory demands (representing the digit “3” seems
easier than representing three discrete weights in an image), numbers might make
it easier to relate distance and weight by converting them to the same symbolic on-
tology. In support of this latter hypothesis, the justifications of the math children in
Experiments 2 and 3 considered weight and distance simultaneously, whereas the
justifications of the explain children tended to switch between weight and distance
across justifications.

Mathematics also provided well-formed operators that served as candidate
methods for organizing and combining the magnitudes of the problems. Experi-
ments 2 and 3 revealed that children who used math explored more ways to com-
bine the magnitudes. Children who explained in words perseverated on the qualita-
tive comparatives more, less, closer, and farther.

A next step is to evaluate the highlighted properties of mathematics experimen-
tally. Experiments 2 and 3 revealed that children in the math conditions considered
more problem parameters simultaneously and explored more structuring opera-
tions but the experiments did not prove that these behaviors were responsible for
the superior performance. Given the benefit of mathematics, it is now appropriate
to compare different math treatments. For example, to evaluate the role of the ex-
ternal notations of mathematics, all children might receive instructions to use
mathematics but only half of the children would be allowed to write down their
mathematics.

Learning in Development

There are many situations where people can apply proportional reasoning (e.g.,
densities, concentrations, fairness, etc.). The regularity of proportional situations,
however, does not entail that children can learn or develop equally from all situa-
tions. Some situations, for example, may have simpler perceptual structures. Simi-
larly, some situations may include cultural supports that help organize children’s
thinking. Cross-cultural work has demonstrated that cognitive development can
vary according to specific cultural settings where instituted symbols and their as-
sociated interpretations occur (e.g., Cole, 1996; Geary, Bow-Thomas, Liu, &
Siegler, 1996; Peng & Nisbett, 1999; Reed & Lave, 1979). This research took an
experimental approach. It used homogeneous samples of children and hindered or
facilitated their application of arithmetic. The goal was to demonstrate and begin
to characterize the import of one cultural creation—mathematics—in propelling
children’s development on a standard benchmark task of physical understanding.
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An issue for views of development that emphasize culturally mediated change
is the generality of a given cognitive change. If specific situations give rise to learn-
ing and development, then the resulting knowledge is unlikely to generalize spon-
taneously beyond those specific situations. It seems unlikely that the children in
Experiment 2 had a cognitive reorganization that ushered in universal proportional
reasoning. Instead, the children developed a particular, culturally mediated organi-
zation of knowledge—a proportion—that happens to have general application. Itis
like learning the concept of variability. The concept is narrow but its range of appli-
cation is broad and it changes the way people can reason about very many situa-
tions. By this account, we should not expect the successful children in Experiment
2 to exhibit spontaneous proportional reasoning whenever appropriate. Instead, the
continued development of proportional reasoning is likely to be characterized by
imperfect and poorly generalized applications.

A useful line of subsequent research would add an additional phase to the latter
two experiments. In the appended phase, children would work with new propor-
tional reasoning tasks such as predicting whether ratios of water and orange con-
centrate taste the same or different. Our hypothesis is that children from the ex-
plain and math groups would initially look the same. However, over time and with
feedback, the children who had used math for the balance scale would learn the
proportional structure of the orange juice task more readily than the children who
never used math. They would be more prepared to transfer and learn from a new
situation (Bransford & Schwartz, 1999).

CONCLUSION

Three studies showed that mathematics affects children’s development of physi-
cal understanding and they began to reveal why mathematics has a positive ef-
fect. However, because we orchestrated a specific situation to promote cognitive
development, there is a question of whether the results are ecologically valid
(Kuhn, 1974). One response is that the application of mathematics in everyday
activities is common, ranging from counting (Ginsburg, 1982) to sports (Nasir,
2001). A second response is that the results become ecologically valid to the ex-
tent that we can institute instructional settings that propel development. Based
on these results, it seems that experiences with relevant symbol systems should
be quite important, in addition to experiences with the physical situation itself.
For example, in a pilot study, we asked half of the children to replicate the math
condition from Experiment 3. The other half of the children replicated the ex-
plain condition, except they also worked with a physical balance scale. After-
ward, we provided a brief classroom lecture on how to solve the original balance
scale problem plus the transfer problem with weights on three pegs. Assess-
ments of child problem solving revealed that the math children learned more



MATHEMATICS AND PHYSICAL KNOWLEDGE 87

from the lecture and developed a more complex physical understanding. As fits
our general story, providing children opportunities to explore the cultural repre-
sentations of mathematics, and not just the physical phenomenon itself, can pro-
pel the development of physical understanding.
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