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Despite the contention that a better understanding of the mechanisms of thought

should lead to better models of instruction, the usefulness of cognitive psychology for the

development of productive teaching practices is uncertain.  A critical challenge for the

field is to develop methods and measures that yield prescriptions, not just descriptions, of

learning.  An impediment to this challenge is cognitive psychology’s common

methodology of isolating cognitive mechanisms. The method of work separates the

learner from access to non-focal cognitive resources, because exposure might

contaminate the isolation of a specific mechanism.  Learning complex ideas, however,

depends on recruiting multiple cognitive (as well as social and motivational) mechanisms

and resources.  To make robust prescriptive theories, it is important to consider how

people integrate processes and resources to facilitate learning.

Our specific example of an integrative prescriptive theory is called Designs for

Knowledge Evolution (DKE).   We are unclear whether our prescription constitutes a

theory, but it does draw inspiration from biological theory, which has a rich vocabulary

for describing change.  DKE presupposes that the development of understanding involves

the co-evolution of different “species” of knowledge in response to environmental

demands. For example, the abilities to perceive and communicate co-evolve in a

particular task environment; each shapes the other.  Smith and Sera (1992) provide a nice

metaphor of child development that captures our emphasis on the co-evolution of

cognitive resources.  In the context of examining how children learn perceptual words,

they state that development is:

“like the evolution and colonization of an island biotope. Perception and

perceptual language can be thought of as two species in this biotope. The
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adaptations of each species clearly depend on each other and all other species on

the island. No adaptations can be understood in isolation. Moreover, it makes no

sense to ask whether one species determines the adaptation of the other. The

outcome of development, the structure of the island biotope as a whole and the

adaptations of the individual species, is best understood as a dynamic system of

continual interaction and mutual influence” (p. 140).

As we will add to this story, the evolution metaphor works even better for human

learning if we view the co-evolving species of knowledge as moving from environment

to environment.  Unlike animals on an isolated island, people move, and this movement

helps evolve an understanding that can continue to adapt as it moves beyond the original

“habitat” of learning.

 The chapter comes in three parts.  In the first part, we argue that despite its

scientific effectiveness, isolating cognitive mechanisms can blind researchers to

significant components and indicators of learning. In particular, we highlight that much

of the relevant learning research has tended to focus on how people learn from direct

experience or how they learn from communicated experience, but not how people co-

evolve the two. We also argue that the outcome measures of learning interventions have

not sufficiently looked at people’s subsequent abilities to adapt to new environments, and

this has led researchers to overlook the value of certain forms of instruction.  In the

second part, we consider more integrative alternatives, and we turn to the work of

developing a method for integrative research.  We describe the methods and measures of

the DKE framework and defend each empirically.  In the third part, we combine the

methods and measures of DKE and describe the results of a study that taught children



4

descriptive statistics. The study not only measured the students’ abilities to apply what

they had learned, it also examined their abilities to evolve new knowledge when placed in

new contexts.   This latter test of “learning at transfer” is extremely important.  The goal

of most school-based instruction is not simply to train students to solve a specific class of

problem efficiently or to transfer a specific procedure whole cloth to a new context. We

argue instead that the goal of school-based instruction should be to prepare students to

adapt and learn in the future (Bransford & Schwartz, 1999).

CONGITIVE PSYCHOLOGY AND METHODOLOGICAL ISOLATIONISM

An original catalyst for the growth of cognitive psychology was to handle

complex forms of learning that behaviorism could not; for example, perceptual learning

(Gibson, 1986), language acquisition (Chomsky, 1966), and hypothesis testing (Levine,

1975).  The enterprise has been hugely successful, but it has stalled somewhat at the door

of classroom education.  Cognitive psychology’s successes in designing instruction are

swamped by criticisms (Cobb, 1992; Lave, 1988) and defensive replies (Anderson,

Reber, & Simon, 1996; Mayer, 1996). The state of affairs suggests that the complexity of

classroom learning may exceed cognitive psychology, just as learning with understanding

exceeded behaviorism.

We attribute some of cognitive psychology’s classroom limitations to its

“methodological isolationism.” We begin our discussion by reviewing two facets of

isolationism: the attempt to study cognitive mechanisms in isolation and the attempt to

measure learning in settings isolated from resources for continued learning.
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Isolating Cognitive Mechanisms

There are many self-acknowledged limitations to cognitive psychology for

developing prescriptive classroom learning theories. These include small effect sizes that

are not robust to the natural variability of the classroom, the belief that science should

avoid prescriptions of what should be, and a limited consideration of contextual sources

of information and interpretation that naturally occur in the highly social environment of

the classroom. However, we see a more methodological impediment to cognitive

psychology’s contribution to a prescriptive learning theory. Cognitive psychologists

frequently attempt to dissociate and isolate cognitive systems.  They distinguish working

and long term memory, implicit and explicit memory, declarative and procedural

knowledge, metacognition and problem solving, visual and verbal processing, and many

other subsystems.  It is a highly analytic endeavor, and the double dissociation is the most

prized experimental demonstration. Once psychologists have distinguished a particular

cognitive mechanism, they study this mechanism, often to the exclusion of others.

The method of dissociation is very effective. It has revealed distinct cognitive

mechanisms and is beginning to locate their neurological basis.  However, an emphasis

on one system, often to the neglect of another, may not be the best way to develop a

prescriptive theory. Learning complex topics, like calculus or car repair, involves many

cognitive systems.  Isolating one system for study does not explain how that system

integrates with others, nor how its development depends on other systems. This

shortcoming has been noted by the instructional psychologist Robert Glaser who stated

that, “Even if we accept that it will be difficult to achieve a unified theory of learning, we
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should attempt to discover grounds for the integration of key aspects of human

competence that are considered separately” (1992, p. 255).

At the risk of over-simplification, we can illustrate our point with a high-level

division that has run through the research literature for many years. This division

separates theories that emphasize the acquisition and application of first-hand knowledge

and theories that emphasize the acquisition and application of second-hand knowledge.

First-hand theories focus on direct experience and second-hand theories focus on

descriptions of experience (i.e., communicated knowledge).

First-hand theories depend on people directly interacting with the phenomena of

interest.  Before children develop skills of interpreting and generating descriptions, they

engage their world directly.  First-hand theories largely focus on perception and action,

and they tend to be more individualistic than second-hand theories, because they

emphasize direct, personal experience.  Examples include Shepard and Cooper’s (1986)

and Kosslyn’s (1980) studies of imagery, because their emphasis was on how people

internally represent perceptual phenomenon. Similarly, Piaget’s first-hand theory

examined how children abstracted understanding based on their actions with and

perceptions of the immediate world. Though Piaget and other first-hand theorists

acknowledge the significance of second-hand sources of knowledge and interpretation, it

is not the focus of their research and they typically do not contribute to second-hand

theorizing and research. For instance, while Piaget studied children’s egocentric speech,

he did so to make the point that young children are cognitively egocentric, rather than

exploring the influence of language and description on cognition.
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First-hand theories are highly relevant to learning.  No amount of reading is

sufficient to learn to drive a car.  People need a chance to turn the wheel, feel the

acceleration, and hit the breaks in real time. Nevertheless, first-hand theories alone are

insufficient for prescribing instruction.  For example, embodied theories of cognition

emphasize the mental simulation and organization of bodily experience (Barsalou, 1999;

Glenberg & Kaschak, 2002; Lakoff & Nunez, 2000).  They are a response to the amodal,

symbol-processing theories common to early information processing, and they argue that

expressions like, “he pushed his way to the top of the company,” or “a force applied to an

object…” gain meaning from bodily experiences of pushing.  But, they have minimal

advice for when external symbols, or simply being told something, should offer

significant support for learning.

Second-hand theories of knowledge acquisition depend on individuals interpreting

descriptions, often in the absence of the original referent. The second-hand information

comes through symbolic forms like language and mathematics, and more recent research

is examining multi-media.  Second-hand theories centrally locate communicable

symbolic structures.  For example, Anderson’s (1983) theory of how people convert

declarative knowledge or instructions (words) into procedural knowledge (actions)

emphasizes the “internalization” or “processing” of second-hand knowledge to permit

meaningful action.

Second-hand theories are also highly relevant to learning. An incalculable amount

of people’s knowledge comes second-hand from books, and understanding how this

happens is important.  Nevertheless, we doubt that second-hand theories are sufficient for

prescribing instruction. Models of text comprehension (e.g., Mannes & Kintsch, 1987),
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for example, often focus on the relations between the words within a passage.  They are

an attempt to describe how people use verbal and textual devices (e.g., pronoun position,

capitalization, sentence ordering) to integrate sentences to “comprehend” a text.  Such

theories, however, provide limited guidance for when people should experience a

situation instead of just read about it.

The division between first- and second-hand theories has a strong empirical basis;

cognition is not uniform. For example, we asked people to reason about pouring liquid

from glasses (Schwartz & T. Black, 1999). There were two glasses of equal height, but

different diameters, as shown in Figure 1. Each glass had a line drawn the same distance

from the rim to indicate the level of water (though there was no actual water in the

glasses). In the Second-Hand condition, subjects could only look at the glasses and had to

reason by describing what would happen. They had to decide if the two glasses would

start to pour at the same angle of tilt, or whether one glass would pour sooner than the

other.   In the First-Hand condition, people held a glass (without water), closed their eyes,

and tilted the glass until they “saw the water reach the rim of the glass in their

imagination.”  We measured the angle of tilt, and repeated the process with the second

glass.   We administered the tasks with three different cup shapes using three different

subject pools.

[Figure 1 – will the glasses pour at the same angle or at different angles?]

People performed below or at chance in the Second-Hand condition.  Moreover,

when people worked in pairs and increased their reliance on communicated descriptions,

they were never correct (Schwartz, 1999).  The First-Hand condition presents a different

picture of people’s knowledge. Except for one person, everybody we tested correctly
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showed that the glass with a wider opening would start to pour sooner than a comparable

glass with a narrower opening. Figure 2 shows their average tilts for three shapes of

glass.   This research indicates a dissociation between the processes referred to by first-

hand and second-hand theories, and evidently, the processes do not always coordinate

with one another (the same people were accurate when they titled but inaccurate when

they reasoned verbally).  The challenge of this chapter is to acknowledge and take

advantage of these different processes.

[Figure 2 – 3 glass tilts]

First-hand and second-hand theories attempt to isolate the cognitive processes that

people apply to perceptual-motor content and to symbolic content, respectively.  This

divide and conquer strategy is a superior way to make scientific progress, until

researchers exclusively rely on one or the other to explain complex cognition.  First- and

second-hand theorists often attempt to generalize their favored mechanism to explain

complex cognition and learning. In our case, when we began research on people’s

abilities to imagine complex devices, we were first-hand theorists. We assumed people’s

perceptual experiences were the wellspring of all understanding. Through a process of

abstraction, perception-based knowledge would turn into explicit description. However,

we have failed to find evidence of bootstrapping from first-hand knowledge to second-

hand knowledge.

For example, we asked people to reason about chains of gears (Schwartz & J.

Black, 1996).  We asked, “Imagine a horizontal chain of five gears. If the gear on the far

right tries to turn clockwise, what will the gear on the far left do?”  Over multiple trials

with differing numbers of gears, most people induced a parity rule; for even chains of
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gears, the first and last gears turn opposite directions. Before people learned the parity

rule, they used hand gestures to portray the gears. They depended on their first-hand

knowledge.  Once they induced the parity rule, they stopped gesturing and relied on

second-hand descriptions of the gears, for example, “All the odd gears turn the same

direction.”  At first glance, the results appear to show that people abstracted their first-

hand knowledge of object interactions into second-hand descriptions of the larger pattern

of gear behavior.  Though the gestures seemed to play a necessary role in the rule

induction, they were not sufficient.  Second-hand representations and processes were

critical to the transition from gestural simulations to rule-based descriptions.  We

examined the differences between people who did and did not induce the rule. People

who verbally described the gears’ positions with numbers induced the parity rule 100%

of the time, whereas people who did not count the gears only induced the rule 26% of the

time.

In another study (Schwartz, 1995), we examined the differences between 10th-

grade children working alone or in pairs.  The children who tried to solve the gear

problems alone only induced the parity rule 14% of the time.  In contrast, children who

worked in pairs induced the rule 58% of the time.  This is well above the probability that

any of the pairs would have included at least one individual who might have solved the

problem in isolation. Evidently, first-hand experiences were not sufficient to induce the

rule – people also needed to integrate descriptions using number, often in communication

with others.

We have found similar results when looking at the development of proportional

reasoning over physical situations.  For example, when young children were encouraged
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to use mathematics to explain problems about a balance scale or involving juice and

water, they developed a more complex understanding of torque and concentration than if

they just relied on first-hand experience (Schwartz, Martin, & Pfaffman, in press;

Schwartz & Moore, 1998).  Although it seems obvious in retrospect, brute induction over

first-hand experience is not enough to propel the learning and development of complex

ideas. People need the structure provided by communicated cultural forms that have been

invented over the years (like mathematics) to help organize complexity.  At the same

time, second-hand knowledge, without some grounding in first-hand experience, does not

get people very far either.  Children who merely memorize math facts can end up

knowing that 3+4 = 7 yet not know that 7 is greater than 4.  Understanding requires first-

and second-hand experience, and it is important to figure out how to effectively combine

the two through instruction.

Isolating the Outcomes of Learning

  A second manifestation of methodological isolationism involves measures of

learning.  One problem is that researchers often measure outcomes associated with a

single cognitive mechanism. For example, there are measures of memory that distinguish

between subsystems ranging from implicit and explicit memory to semantic and episodic

memory.  The design of precisely targeted measures is an important skill developed by

cognitive psychologists, and it leads to significant progress.  However, tests of specific

memory functions are only proxy measures of deep understanding, because deep

understanding also includes the ability to perceive, plan, act, and transfer.  It is important

for education to avoid an over-reliance on memory tests, unless the goal is to train people

to remember specific procedures and facts under narrow retrieval conditions.  As we



12

demonstrate below, memory tests can fail to differentiate those who understand from

those who do not.

A second (but related) problem with many measures of learning is that they tend

to employ sequestered problem solving (Bransford & Schwartz, 1999).  After participants

in an experiment learn a target concept, they attempt unaided problem solving or

retrieval.  Like a jury, they are sequestered from contaminating sources of information as

they complete tasks that measure their learning. This way, the researchers can be sure that

any differences between learning conditions are due to the experimental treatments and

not some learning that surreptitiously occurred during the assessment.

An important question is whether the goal of education is to prepare people to

solve problems without access to resources.  For example, typical transfer experiments

ask whether participants who have learned a task or concept can apply their learning to a

new problem without access to additional resources for learning how to solve the

problem.  The assumption appears to be that transfer involves the direct application of a

confined body knowledge without any adaptation or growth of that knowledge in a new

situation.  This assumption seems warranted when the goal is efficiency and the context

of application is highly similar to the context of instruction.   However, for situations of

adaptation, a reliance on tests of sequestered problem solving seems ecologically suspect

(Schwartz, Bransford, & Sears, in press).  As an everyday example, when students apply

the arithmetic they learn at school to go grocery shopping, they need to learn about the

particular characteristics of shopping (e.g., best buy comparisons), and they need to adapt

their algorithms to work without pencil and paper.  If they only transferred their paper

and pencil algorithms, they would make very slow shoppers.  Hatano and Inagaki (1986)
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differentiate adaptive experts, who continue to learn as the times change, from routine

experts, who apply the same skill over and over.  For most school-based instruction, the

goal is to prepare people to adapt to new situations, and therefore, it makes sense to

assess the quality of the instruction by students’ abilities to learn given resources in a new

environment.

In addition to questions of ecological validity, tests of sequestered problem

solving raise a methodological concern. Tests of unaided problem solving can be

obstacles to determining effective strategies for putting learners on a trajectory towards

adaptive expertise. They can blind us to the value of activities that prepare students for

future learning but do not immediately show benefits on tests of sequestered problem

solving.  An example of this point comes from a study that looked at children learning to

add fractions (Martin & Schwartz, 2004). Over three days of guided discovery, 5th-grade

students learned fraction addition with physical manipulatives that they could move

around to aid in their computations and conceptualization. Half of the students worked

with tiles pieces, and half of the students worked with pie wedges (e.g., 1/4 wedges, 1/8

wedges, etc.).  Given feedback, we found that students in both conditions learned to do

fraction addition problems with their material, and the groups did not exhibit any

significant differences.  In a transfer phase, students from both conditions tried to solve

new fraction addition problems without any feedback.  Students tried to solve problems

in their heads. When they could not solve the problems in their head, we provided them

with new manipulatives they had not seen before (e.g., fraction bars that indicate

fractions by their length, and beans and cups). To successfully solve the problems with

the new materials, the children had to adapt to the new environment and figure out how
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to use the materials to support their reasoning. In this setting the tile students did much

better than the pie students.  Over several trials, the tile students learned how to use the

new materials, whereas the pie students did not.

The fraction study provides an important lesson. When the students worked with

their original learning material or had to solve problems in their head without access to

new resources for learning, they looked the same across the groups.  However, when we

looked at how well they performed in a context with new resources (i.e., new materials),

the benefits of the tiles became apparent.  Had we only relied on sequestered problem

solving, we would have overlooked the value of the tiles for preparing students to learn

during transfer.  Tests of sequestered problem solving can be too blunt an instrument for

measuring early stages of learning and for evaluating the effectiveness of one

instructional treatment over another.

INTEGRATIVE APPROACHES TO COGNITIVE RESEARCH

While debates about the primacy of first- and second-hand processes can

successfully advance psychological theory and evidence, these debates will not explain

how people integrate the two processes. At the level of educational experience, learners

require both, whatever the ultimate atomic structure of cognition may be.  Tests of

isolated problem solving, without evaluations of subjects’ abilities to learn in new

situations, can advance cognitive psychology.  However, isolating learners from an

environment of learning during a test misses important aspects of the prior knowledge

that prepare people to learn, especially when the goal of instruction should be to prepare

people to learn from the resources available in their next classes or once they leave

school altogether.
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In this section, we consider more integrative approaches to cognitive psychology

that we believe can advance both cognitive research and the development of prescriptive

learning theories.  We review a few integrative approaches, and then we describe and test

Designs for Knowledge Evolution.  Afterwards, we describe our efforts to develop

dynamic assessments (Feuerstein, 1979) that examine whether students are prepared to

evolve their knowledge in new situations and learn.

Some approaches to integrative research

Robbie Case (Case & Okamoto, 1996) provides an excellent example of an

integrative model of learning. Case’s work arose from the careful analysis of children’s

natural patterns of development. His theory describes development as the integration of

core conceptual structures, rather than as the maturation or enhancement of a single

knowledge structure.  One example comes from his analysis of the development of

children’s understanding of counting and simple addition.  In the early stages of the

process, children move their fingers down a line of objects. At the same time, they say a

counting word for each action.  The interweaving of action, perception, and language

permits the child to develop a differentiated understanding, for example, of the cardinal

value of five and the ordinal value of the 5th position.  Case’s model provides important

guidelines about developmental readiness for learning in mathematics, the significance of

some representations over others, and the importance of games that lead to children’s

fluency in traversing the many representations and manifestations of quantity.

Another approach to developing an integrative research agenda comes from work

on scaffolding.   Scaffolding research examines the material situations and the social

mediations that lead to successful learning. The method of work is analogous to
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naturalists who look for native plants that have medicinal properties.  Once they discover

a naturally occurring medicinal plant, chemists can distill the active ingredients into a

potent medicine.  Similarly, scaffolding research often builds on everyday instances of

material and social supports to seed the development of more precise instructional

technologies.  The central idea of scaffolding is that, with mediation, students can

complete mature activities that they cannot complete themselves.   A common

explanation for the effectiveness of scaffolding is that it permits the learner to complete

the activity, and over time, the learner internalizes the context and practices of the

scaffold.  The cognitive mechanisms responsible for internalization are themselves often

treated as black boxes, which seems acceptable for the level at which these theories

operate.

Scaffolding can take many forms. In one form, learners complete an authentic

activity with additional physical support.  Training wheels is a canonical example.  In

another form, the support comes from the social structure and active mediation of more

knowledgeable others. Apprenticeship is a good example, and this approach has been

nicely generalized to instruction.  In reciprocal teaching (Palinscar & Brown, 1984), for

example, teachers provide models for how to ask important questions as the teacher and

students work jointly to comprehend a text.  Gradually, students take on more of the

responsibility for asking questions, until such time that they can complete the task

without the help of the teacher.

A common ingredient of scaffolding is that learners take on partial roles that

allow them to learn the form of the activity even though they may not fully understand its

function (Saxe, 1991; 1999).  For example, in a study of learning in the game of
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dominoes (Nasir, 2000), we found that experts managed to scaffold novices’ partial

moves while still maintaining an enjoyable game for themselves. The experts and novices

co-created a game structure in which novice players were allowed to choose which tile to

play, and on the next move, the expert partner determined where to place the tile.  A

particularly interesting form of scaffolding involves learner’s identity as a social

participant (Lave & Wenger, 1991; Nasir, 2002).  For example, a young child might wear

a carpenter’s belt filled with plastic tools.  Though the child cannot use the tools to

participate in the activity of building an authentic structure, the plastic tools scaffold the

child’s identity as a builder and conceivably position him or her to learn carpentry in the

future.

Scaffolding research offers a nice instance of studying a pre-existing, integrative

learning activity to build a prescriptive theory.  Scaffolding involves perceiving and

acting, plus the communication and interpretation of other people’s understandings that

can lend significance and structure to first-hand experiences.  However, the study of

scaffolding has some limitations for the development of prescriptive learning theories.

One limitation is that it has followed the natural tendency for precise terms to become

amorphous when taken up broadly. Scaffolding has become so pervasive that anything

that supports learning is labeled a scaffold.  Another, and more foundational limitation is

that scaffolding tends to focus on mature performance, so that the measure of successful

scaffolding is whether a learner can complete a task unaided.  From our perspective, one

goal of instruction should be to prepare people to learn in the future. Because of its

emphasis on performance, not all scaffolding and apprenticeship models include
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mechanisms to support future learning and adaptation beyond the performance of the

original task.

Final in our survey of integrative methods is work on multiple representations.

Research along these lines stems from the belief that the juxtaposition of different

representations will lead to a deeper understanding.  Kaput (1995), for example, has

developed yoked computer simulations.  Students see the movement of an object like a

car on a computer screen while yoked graphs simultaneously show graphs of the car’s

acceleration, velocity, and distance.  A similar method allows children to make the

movement themselves while showing the plots on the computer screen (Nemirovsky,

Tierney, & Wright, 1998).  These types of juxtapositions often build on important

intuitions and assumptions.  For example, in the yoked simulations, the underlying

assumption appears to be that meaning arises by finding the similarities between first-

hand experiences of an event and second-hand representations of the same event.

Students, for example, learn that their bodily acceleration maps onto a steeper slope in the

velocity graph.  However, by itself, the mere mapping of the similarities between

representations may not be the most effective way to learn and understand.   For example,

work on analogical mapping proposes that people learn by mapping a known structure

into an unknown structure.  For this to be effective, people need to have the known

structure to begin with. What if they do not? Ideally, research on multiple representations

will develop a principled account for how people can best integrate different forms of

knowing and representation, especially when that knowledge is immature to begin with.
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Designs for knowledge evolution

DKE is an explicit attempt to join first- and second-hand experiences into a

prescription for learning. It begins with well-documented mechanisms that generate

specific forms of learning. It then proposes a framework in which the multiple

representations and mechanisms can interact to co-evolve a well-rounded understanding

that supports future learning and adaptation.  We first describe a mechanism for

developing second-hand knowledge and then a mechanism for developing first-hand

knowledge. We then present our method of integration and an initial test in the domain of

statistics instruction.  Afterwards, we return to the question of preparing people for future

learning.

A powerful and natural mechanism by which people come to describe the world is

through the construction of mental and symbolic models. Vosniadou and Brewer (1992),

for example, asked young children to draw pictures of the earth. They found that children

spontaneously constructed coherent, albeit unconventional, models.  For example,

children combined their first-hand experience of a flat earth with their second-hand

knowledge that the world is round to draw round discs or a flat earth resting in a bowl.

These constructions illustrate that people are natural model builders, and it follows that

this could be a useful mechanism for enhancing learning.

In the case of the earth, the drawings presumably reflected the internal models the

children spontaneously constructed.  People are also good at intentionally constructing

external models to serve as explicit second-hand descriptions.  We asked 7th-grade

children to construct visual representations of causal pathways like, “X can communicate

the disease to Y,” “Q can get the disease from R,” “F gets infected by Y” (Schwartz,
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1993). Their task was to make representations that could solve problems like, “If X has

the disease, what else can get the disease?”  The children were quite inventive at building

models, and most children represented the many-to-one and one-to-many relationships

needed to solve the problems. Figure 3 shows a representative selection of the

visualizations the children developed.  Interestingly, the opportunity to construct visual

models had a lasting effect. Several weeks later, embedded in a class activity, the

children spontaneously transferred the idea of using visual representations for a novel

problem, though there were no prompts or cues to do so.  Even more impressive, over

half of the students also tried to invent new visual representations for problems that did

not have the same “causal pathway” structure.  Appropriate opportunities to build models

can prepare students to adapt new structures in novel settings.

[Figure 3 – children’s visual models]

In addition to a mechanism for developing second-hand knowledge, we also need

a mechanism for developing first-hand knowledge.  A critical form of first-hand

knowledge is the ability to perceive.  Contrary to the common assumption that perception

is untutored, people learn to perceive.  For example, novices cannot taste the subtle

flavors that differentiate two wines, whereas experts can.  A common “expert trap” is to

assume that novices can see what the expert refers to. Students and teachers, for example,

can use the same words with very different meanings in mind.  For example, in a

psychology course, teachers may present an instance of recognition memory, label it for

the students, and hear the students use the words “recognition memory.”   This does not

mean the students have noticed what constitutes the phenomenon “recognition memory.”
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They may only see the vague phenomenon of “remembering things,” and fail to

distinguish between recognition memory and free recall, for example.

A significant body of research describes learning to perceive in terms of noticing

what differentiates things from one another (E. Gibson, 1969; Marton, this volume).

Beiderman and Shiffrar (1987) demonstrated that people who have to determine the sex

of baby chicks learn to differentiate the males and females by discerning the distinctive

and often subtle features that uniquely identify each sex. In contrast, novices cannot

distinguish between male and female chicks, because they do not see the key features.  A

powerful way to help people notice is to have them examine contrasting cases (Bransford,

Franks, Vye, & Sherwood, 1989; Gibson & Gibson, 1955).  For example, wine tasting

classes ask people to compare one wine against another, so that people can isolate what

makes each wine distinctive.  Howard Gardner (1982) describes an art exhibit that

juxtaposed original paintings and forgeries.  At first people cannot tell the difference, but

over time, they begin to notice the features that identify the original. Dibble, as reported

in Gibson (1969), even found that opportunities to examine contrasting cases of letters

enabled people to subsequently recognize the letters better than copying them.

 The goal of DKE is to unite the mechanisms of perceptual learning for developing

first-hand knowledge with model building for developing second-hand knowledge. Each

mode of understanding has different characteristics and supports different insights and

inferences. To bring the two ways of knowing into productive interaction, it is not

sufficient to simply juxtapose them. The goal of learning is not to find the correlations or

mappings between the two, such that they are simply isomorphs in different modalities.

Instead, the goal is to find out how the two forms of knowing can complement one
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another to make a more profound and multi-faceted understanding. For example, in the

previous example of people learning about gears, the gestured simulations of the gears

provided access to primitive physical intuitions of force and movement, whereas the

mathematics provided access to highly structured representations. In combination, they

generated a generalized symbolic parity rule grounded in physical experience.

Our approach to developing a prescriptive learning theory is to use the unique

strengths of each form of knowing to illuminate the other.  We design instruction so that

the two forms of knowing co-evolve as they adapt to new task environments.  The key

features of DKE draw on some of the concepts found in evolutionary theory:

1. The process begins by students producing a new species of symbolic model that

can respond to differences between contrasting situations. This permits students to

simultaneously perceive what is significant about the features of the contrasting cases and

develop a structured account of what they perceive.

2. Students test their models across contexts of contrasting pairs. As they confront

new contexts, some models fail and students notice properties of the new contexts and

attributes of their models that “selected” against survival.

3. Students mutate new models that can survive in the new context.  The new

models evolve from the understanding developed from previous models, even if the

students need to abandon the form of their earlier model and try a new “genetic” line of

models.

4. Students juxtapose their respective models to notice their “survival” value.

Whereas the contrasting cases introduce environmental variation, the juxtaposed models



23

introduce species level variation.  Noticing the varying quality and useful features of

different models introduces selective pressures to help students generate useful models.

Across the multiple contexts and opportunities for co-evolution, the learner comes

to perceive important features of the problem domain while evolving models that can

adapt to those and future features.  We can best illuminate the first three aspects of DKE

with a brief study that helped students learn about the statistical concept of variability

(Moore & Schwartz, 1998).  We presented college students with a sequence of tightly

focused contrasting cases. They had to invent formulas to capture what is different about

each pair of cases.  For example, the first pair of contrasting cases presented the two

distributions:  {1 3 5 7 9} versus {3 4 5 6 7}.  We pointed out that the two distributions

have something in common, namely, the average.  We explained that the average is a

convenient way to characterize what is common about the distributions.  It is much easier

to communicate the averages than the complete distributions, especially when the number

of items gets very large.  We then asked the students to notice that there is also a

difference between the two sets of numbers, called the “spread,” and to invent a formula

that can capture what is different.  The students typically invented a range formula that

subtracted the smallest number from the largest. We then presented a new contrasting

case: {1 3 3 3 9} versus {1 3 5 7 9}.  Students saw that their range formula did not

differentiate the two data sets.  They came to perceive that “spread” is not simply

measured by the end values; it involves density as well.  They had to evolve their original

model to handle the new context of contrasting cases.  As the process of contrasting cases

plus invention continued, students noticed additional features and developed models that
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were robust to those features.  For example, we presented the contrast: {1 3 5} versus {1

1 3 3 5 5}.  This helped the students notice that distributions also have different sample

sizes and that their formulas needed to accommodate this possibility.

Students rarely invented the conventional solution agreed upon by experts;

namely, the variance formula.  However, as we demonstrate below, inventing models

over contrasting cases prepares students to understand the statistical formulas at a deep

level when they become available.  For example, students appreciate that dividing by “n”

elegantly solves the problem of different samples sizes.  For now, we simply show that

the process of co-evolving models and perceptions across contrasting cases helped

students become aware of the aspects of context that their representations must handle to

be useful.  In turn, this awareness provided them with a better understanding of the work

that a symbolic model does and the situations to which it refers. We compared the

students who completed the DKE activities and never learned a formal solution with two

other groups of students.  One group of students learned the procedure for computing

variance from a worked example and applied it to each of the contrasting data sets in

turn.  The other group of students had taken a semester of college statistics.  A few weeks

after our intervention, embedded in a regular class, the students from all three groups saw

the problem shown in Table 1.  In this problem, an industrialist has made the claim that

blue people are smarter than green people, and therefore it is better to hire blue people.

To support his claim, the industrialist offers the result of an intelligence test that shows

that blue people have a higher average IQ than green people.  He also points to the work

of many other researchers who found the same result.  The students saw an example of
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the distributions the industrialist had found.  The students were asked to write as many

arguments as they could think of to disagree with the industrialist.

[Table 1 – blue green problem]

When we examined the arguments presented by the students, the results were

striking.  The students from the DKE condition noticed that the averages were

misleading. They saw past the symbolic measure (i.e., the average), and perceived the bi-

modal distribution of the green people.  For example, one student stated, “The average is

wrong here. Nearly half the green people are smarter than all but the top few blue

people.”  Over 95% of the DKE students noticed that there were green people that were

smarter than the blue people.  In contrast, less than half of the students in each of the

other two groups noticed this. Instead, they tended to accept the interpretation of the

average. These students exclusively made arguments like, “IQ tests are not fair,” or “IQ

tests do not mean they won’t be good workers.”  So, even though the DKE students had

worked with fairly limited and abstract sets of data, they were prepared to think deeply

about the meaning and applicability of the average and to perceive the quantitative

phenomenon to which the average refers.  In contrast, the students had been directly

taught statistics accepted the average at face value and did not consider whether it was a

fair summarization of the data.

Measures of preparation for future learning

We now return to our second concern with methodological isolationism. We

argued that much of cognitive psychology uses a sequestered problem-solving paradigm

that measures the effects of learning with tests of unaided problem solving or memory.

We argued that the subsequent ability to learn with resources could be a more important



26

and sensitive indicator of the effectiveness of instruction.  We suggested that an

alternative to sequestered problem solving is a dynamic assessment that measures

preparation for future learning.  In this section, we demonstrate one measure of

preparation for future learning.  We used it to compare two methods of instruction.

Students completed one of two instructional treatments. Afterwards, we measured how

well they subsequently learned from a new information resource.  The students who

learned more from the resource told us something about which treatment better prepared

students for future learning.

Our studies examined whether assessments of preparation for future learning

would reveal important information missed by assessments of sequestered problem

solving (Schwartz & Bransford, 1998).  The studies occurred in the context of teaching

college students about memory phenomena including false recognition, primacy, recency,

ordered recall and so on.  In one study, some of the students analyzed simplified data sets

from classic memory experiments.  By design, experiments generate contrasting data sets

that help illuminate the consequences of different treatments.  Table 2 provides a sample

of the data sets the students analyzed.  A careful examination of the data reveals multiple

contrasts that can help students perceive what is significant in the results. The students’

task was to analyze the data sets and graph the important patterns they found.  We did not

tell the students the purpose of the experimental designs; they had to discern and decide

which patterns in the data they thought were important.  The other students did not work

with the contrasting cases. Instead, they read a modified book chapter that described the

same studies, showed the graphed results, and explained their theoretical significance.

Their task was to write a two-page summary of the important ideas in the chapter.  A few
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days later, the students in both groups heard a common lecture that explained the

experiments, the results, and the theories that were designed to accommodate the results.

The question is whether both groups of students had been equally prepared to learn from

the lecture.  We also included a third group that did not hear the lecture. This group also

completed the contrasting cases activity, but instead of hearing the lecture, they analyzed

the data sets a second time looking for any patterns they may have missed.  All told, there

were three conditions:  Contrasting Cases + Lecture, Summarize Chapter + Lecture,

Double Contrasting Cases.

[Table 2 – Examples of simplified data sets]

To assess whether the students learned from the lecture, we employed two

measures about a week later.  One measure used a recognition test that included claims

repeated in the book chapter and the lecture.  For example, “When people understand

something they have read, they tend to remember it verbatim.  True or false?”  The

second measure was a prediction task that used the description of a novel experiment.

The students’ task was to predict as many of the outcomes from the experiment as

possible.  There were eight distinct predictions that could be applied from the materials

they had worked with beforehand.

On the recognition test, the two conditions that heard the lecture looked about the

same, but the Double Contrast condition did poorly.  By this assessment, the contrasting

cases activity appears useless.  However, the results on the prediction task reveal a

different story.  Figure 4 shows that the Double Contrast students again did badly.

However, the Summarize + Lecture students did equally badly.  The Contrasting Cases +

Lecture students did quite well, producing over twice as many correct predictions as
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students in the other conditions.  By this result, the contrasting cases were very important

for learning from the lecture.  Students, who had read about the descriptions of the

experiments instead of analyzing them first hand, did not learn very well from the lecture.

In contrast, students who had analyzed the contrasting cases learned a great deal from the

lecture.  We know they learned from the lecture because the Double Contrast group that

did not hear the lecture did badly.

[Figure 4 – time for telling results]

One important lesson from this study is that the activity of analyzing contrasting

cases would have looked useless if we had not measured its effects on students’

subsequent abilities to learn.  Assessments of preparation for future learning can reveal

levels of knowing that are imperceptible to sequestered forms of assessments. A second

lesson is that assessments of memory, particularly recognition memory, can be

misleading.  On the test of recognition memory, students who summarized the chapter

performed the same as students who analyzed the contrasting cases and heard the lecture.

The benefits of the contrasting cases appeared when students had to transfer to evaluate a

new situation and perceive its significant features.

A final lesson is that lectures can be an effective method of instruction if people

are prepared to understand the significance of what the lecture describes.  We have met

researchers who believe that “telling” is inconsistent with theories of constructivist

pedagogy.   We have also seen instructors who refuse to tell students an answer for fear

of violating effective principles of constructivist instruction. Constructivism, however, is

a theory of knowledge growth and not a prescriptive theory of instruction.  According to

constructivism, all knowledge is constructed, whether the building blocks of knowledge
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come from first- or second-hand experience.  Given appropriate experiences, people can

be very effective at constructing knowledge (or as we prefer to say it, “effective at

evolving knowledge”), even if they are sitting quietly listening to a lecture.  The question

is what activities prepare students to continue to evolve their knowledge.

INTEGRATING METHODS AND MEASURES TO TEACH DESCRIPTIVE

STATISTICS

In the preceding sections, we offered two alternatives to methodological

isolationism.  One alternative was the development of studies that examine the

integration of different forms of knowing rather than their isolation, and we outlined

Designs for Knowledge Evolution as a promising instance.  Our second alternative was to

measure students’ preparedness for future learning rather than relying solely on measures

of isolated performance. We provided an instance of a dynamic assessment in the context

of teaching theories of memory that uncovered important indicators of learning that were

obscured by measures of unaided performance.  We now bring these two proposals

together in a single study that involved 9th-grade students whom we taught descriptive

statistics.

Statistics is a notorious instance where people have trouble learning the formulas

and the phenomena to which they refer.  A large body of cognitive research on statistical

understanding has documented misconceptions about probability and statistical inference.

Tversky and Kahneman (1973), in particular, have shown that people borrow non-

probabilisitic reasoning methods to solve probability problems, and this leads to faulty

inferences and misconceptions.  The research on “judgment under uncertainty” has

powerful implications for policy and practice, but it has not provided much insight into
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instruction (but see Nisbett, Krantz, Jepson, & Kunda, 1983).  This may be because it is

very difficult to remediate people’s faulty heuristics, or it may be because the design of

the research was not learning focused.  In either case, George Cobb (1997) has proposed

that it is better to avoid statistical inference in the early phases of instruction and focus on

descriptive statistics. We have adopted Cobb’s wisdom.

The co-evolution activities

To examine the value of DKE, especially as a preparation for future learning, we

conducted a two-week study involving eight classrooms of 160 public school students

(Schwartz & Martin, 2004). The instruction consisted of two three-day cycles. In cycle

one, students learned about graphing and central tendency. In cycle two, they learned

about formulas and variance.  The study also included a third abbreviated cycle that

implemented an experimental manipulation to evaluate whether DKE prepared students

to learn. We provide examples of each cycle, which all students completed, and then we

develop a description of the experimental treatment in cycle three.

In the first cycle, students worked with contrasting data sets that highlighted how

the value of a central tendency measure depends on the context of application. For

example, students decided which of two climbing ropes should get the higher rating.

They received data from “load tests” that indicated the weights at which BlueStar and

RedGrip ropes over multiple trials.  Students typically graphed the mean load of each

rope, but eventually they began to realize that for a climbing rope, the minimum load at

which it will break is a safer measure than the mean.  After the rope activity students

further evolved their knowledge by working with contrasts where the spread of grades

differed in two chemistry classes. To provide a concrete instance of the materials, Table 3
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shows the data and assignment for this activity.  Finally, for the third problem set,

students had to decide if a drug was more effective than a placebo.  In this case, the drug

led to bi-modal effects such that a simple comparison of the means would be misleading.

[Table 3 – class grades task]

Students worked on each activity in small groups for about 30 minutes.  Their

task was to invent a graphical representation that would help justify their decisions.

They were told that their graphs had to be obvious enough that another student would be

able to understand what it represented and what decision the group had made.  Students

drew their finished graphs on the blackboard.  Other students were chosen at random to

come to the board and explain a graph and its implied conclusion, as if they had been part

of the group.  The need to make graphs that could “stand independently” of the person

who made the graph, encouraged the students to develop more precise and complete

second-hand description, and alerted them to the importance of communicable

knowledge.  In addition, just as the contrasting data sets helped students perceive

important properties of distributions, the contrasting graphs that filled the board helped

students notice important aspects of second-hand representations.

The cycle on graphing and central tendency introduced the students to the idea of

creating their own procedures and representations.  This was important because these

students had typically received procedures rather than evolved them.  Throughout, the

instructor merely facilitated and clarified student work and presentation.   It was only

after completing the three activities that the instructor gave a brief lecture on

conventional graphing solutions (e.g., a histogram and box plot), and students practiced

for about 15 minutes.  When presented with conventional graphical representations, the
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representations were offered as solutions that experts had invented over the years to

capture important aspects of distributions.  So, rather than creating a rhetorical “guided

discovery” task, the students were in the position of evaluating how successful they

thought the expert’s solutions were. (Many preferred their own solutions.)

The second cycle, which targeted variance, began with the problem of inventing a

“reliability index” for baseball pitching machines.  The students worked with the grids in

Figure 5.  Each grid represents a different pitching machine.  The X in the center is the

target.  Each of the black dots represents the location of one pitch from the respective

machine.  The grids hold many contrasts that helped students notice the distribution

characteristics that their formula “index” would need to capture.  Students presented their

solutions on the board as before. Many students drew a box around the dots and either

found the area or perimeter of the box.  Other students used the Pythagorean theorem to

measure the distance from a randomly chosen dot to all the other dots.  Of all the groups

across all the classes, only one group came up with a general and consistent solution; they

measured the distance from each dot to every other dot and summed the distances. Even

though no students generated a general solution, this activity plus another using more

focused contrasting cases, prepared the students to learn from the subsequent lecture. The

instructor presented the mean deviation formula in a five-minute lecture.  Students

practiced the formula with a new set of data for about 15 minutes.

[Figure 5 – baseball grids]

The final day of instruction implemented the experimental design. All the classes

received a scenario in which they had to compare high scores from two distributions, for

example, comparing test scores from two different tests. They had to decide which score
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was higher, even though the two test distributions had different means and variances.

The appropriate solution to this type of problem is to use standardized scores, which

measure how many deviations a score is from the mean.  In lay terms, they had to “grade

on a curve” and compare where each high score appeared on its respective curve.  There

were two conditions.  In the Invention condition, the students had to invent their own

solution to the problem. In the Tell-and-Practice condition, the students were told how to

solve the problem graphically by marking deviation regions on a histogram and

comparing the “deviations” of the high scores (i.e., the normalized score).  Students

worked for about 25 minutes.  There were no presentations, and the instructor never

presented the conventional solution for computing and comparing standardized scores.

The question was whether the Invention or Tell-and-Practice students would be more

prepared to learn the conventional solution when embedded as a learning resource during

the post-test.  Our prediction was that the Invention students would be better prepared to

learn, because they had grappled first-hand with the contrasting data sets and they had

invented possible models.

Assessments of performance and readiness to learn

The students took a 40-minute test on a broad array of measures before and after

the instructional intervention.  The test included several different types of measures to

capture the benefits of the first two instructional cycles on graphing and measures of

variability. For example, there were computation items, graphing problems, word

problems, symbolic insight problems (e.g., “Why does the variance formula divide by

“n”?).  Students performed quite well at posttest, and when measured a year later, they

still outperformed college students who had taken a semester of statistics (for more
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details, see Schwartz & Martin, 2004).  Evidently, the DKE curriculum had prepared the

students to learn from the brief lectures. For example, the majority of students knew that

“dividing by ‘n’” solves the problem of comparing different sample sizes; it finds the

average of how far each data point deviates from the mean.  This information was only

presented once as one of many points in the brief lecture.  We also included an

“adaptation” problem. Students had to find a way to estimate variability in bi-variate data

shown in a scatter plot, though they had only learned about univariate data.  This is a

difficult adaptation of the mean deviation, and the frequency of students who gave

adequate responses only improved from 10% on the pretest to 34% on the posttest.  On

the other hand, college students who had a full semester of college statistics were only

able to solve the problem 12% of the time.  Compared to the college students, the DKE

students had developed an adaptive base of knowledge.

For the experimental comparison of the Invention versus Tell-and-Practice

conditions (which only occurred on the last day of instruction), the test evaluated how

well students had been prepared to learn.  Of particular focus was whether the students

could learn how to compute and compare standardized scores, given summary descriptive

measures. (Recall that in the class work, the students had worked with raw data not

descriptive statistics).   To examine whether students were prepared to learn from

resources, our test included a dynamic assessment composed of two items.  The “resource

item” built into the test came in the form of a worked example.  It provided step-by-step

instructions for computing standardized scores to compare individual data from different

distributions (e.g., is Betty better at assists or steals).  As part of the test, students had to

follow the worked example to complete a second example at the bottom of the same
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page.  The “target transfer problem” appeared a few pages later in the test. The problem

included averages, deviations, and scores of an individual in each of two groups (e.g.,

two biology classes). The average score and variance differed between the groups and the

students had no raw data to work with.  The question was whether the students would

understand the implications of the procedure that appeared in the worked-example

resource problem and transfer it to solve the target problem.

To ensure that students were actually learning from the worked example and

using it to solve the transfer problem, the study used a 2 x 2 between-subjects

experimental design.  One factor was whether students were in the Invention or Tell-and-

Practice condition. The second crossed-factor was whether the resource worked example

appeared in the posttest. Half of the students from each condition received the step-by-

step resource item for how to compute and compare standardized scores, and half did not.

If students were prepared to learn from the embedded resource, then students who

received the resource should do better on the target transfer problem than students who

did not receive the embedded resource.

[Figure 6 –  standardized score results]

Figure 6 shows the students’ performance on the target transfer item at posttest

broken out by condition and whether the worked example resource appeared in the test.

Students received credit if they gave either a quantitatively correct or qualitatively correct

answer, including graphs.  Students in the Invention condition who received the

embedded resource for how to compute standardized scores doubled the performance of

the other three groups.  The Invention students must have learned from the embedded

resource example, because Invention students who did not receive the resource performed
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poorly.  In contrast, the Tell-and-Practice students did not show any benefits from having

the resource item.  Their lesson, though well-designed and highly visual, had not

prepared them to learn the significance of the resource item, even though 100% of the

students correctly followed the worked example on the resource item.

As fits our overall story, activities that help students perceive important properties

of data coupled with activities that encourage the development of models can prepare

students for future learning.  Had we only measured their ability to perform without an

assessment of their abilities to learn, we would have seen little benefit of DKE over the

other method of instruction.

SUMMARY AND PROSPECTS FOR COMPUTER TECHNOLOGIES

Many cognitive theories are descriptive.   They describe how people think, and in

many cases, they provide explanations for the mechanisms of those thoughts.  Other

theories are normative; they describe the behaviors or knowledge of experts, and they

often illuminate the limitations of novices.   Fewer cognitive theories are prescriptive.

They do not convert their descriptive findings into prescriptions for how to achieve

particular normative outcomes.  We identified two related methodological obstacles to

developing prescriptive theories. One obstacle is that cognitive research tends to isolate

mechanisms and disregard the multiple levels of knowing and learning relevant to

education.  As a broad instance, we described a tendency of the field to separate into first-

hand theorists who emphasize direct experience with phenomenon and second-hand

theorists who emphasize the acquisition of descriptions of experience.  We proposed that

these types of theorizing do not resolve the problem of how people integrate different

ways of knowing. A second obstacle is that cognitive research typically uses assessments
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that aim to prove psychological theories rather than improve educational goals.  We

pointed to tests that isolate subjects from opportunities to learn during the test.  We

argued that these types of sequestered assessments of unaided performance can miss an

important goal of most education, which is to prepare students to learn once they leave

the classroom.  We also demonstrated that assessments of sequestered problem solving

can overlook important levels of understanding that prepare students to learn.

As an example of research designed to generate prescriptive learning theories, we

described our efforts to develop and assess Designs for Knowledge Evolution.   We

borrowed some concepts from evolution to generate activities that help students grow

intellectually.  Unlike other high level theories such as constructivism, evolutionary

theory suggests specific mechanisms of change that can be used prescriptively.  In DKE,

we encourage students to co-evolve first- and second-hand knowledge jointly across a

series of different problem contexts.  Students generate and revise models to differentiate

contrasting cases.  Over time, students develop a first-hand understanding of the

important features of the domain, and they learn the work that second-hand

representations need to accomplish.  This prepares students to learn subsequently, for

example, when they hear a formal solution in a lecture and when they follow worked

examples embedded in a test.  By co-evolving and adapting their knowledge to different

contexts, the students exhibited excellent gains on assessments of preparation for future

learning.

The current work can translate into instructional technologies.  Our goal is a

prescriptive learning theory that is easily adapted to current classrooms. For example, we

are building technologies that permit students to complete DKE activities as homework
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before coming to class (instead of the more traditional model where homework follows a

lesson). In this way, they will be more prepared to understand the teacher’s lessons.  One

very simple technological implementation involves putting the problem sets on the web,

along with appropriate guidance and access to other people’s inventions.

We are also examining solutions that integrate additional cognitive mechanisms

into knowledge evolution.  One example involves Teachable Agents (Biswas et al.,

2001).  Teachable agents capitalize on the common wisdom that people “really” learn

when they teach.  So, rather than have the computer teach the students, we have the

students teach the computer.  Afterwards, students get to see how their agent performs,

and they try to learn from its mistakes and improve its performance.

[Figure 7 – Orbo screen shots]

We have built a statistics teachable agent named Orbo1.  Students “teach by

showing.”  They try to show Orbo how to compute values to differentiate two contrasting

distributions.   Orbo tries to induce what the students are trying to show and solve

subsequent problems generated by other students or teachers who want to test Orbo (e.g.,

using the web-based problem sets mentioned above).  At select points, the computer

system can introduce new problems that illuminate weaknesses in what Orbo has been

taught.  This leads the student to evolve new knowledge and re-teach Orbo.  Finally,

Orbo can exhibit misconceptions.  Like a good tutor, students need to figure out what

Orbo is thinking, and this helps the student’s clarify their own understanding. Figure 7

describes an example where a student needs to infer what caused Orbo to misunderstand.

Additional information about Orbo and another statistics agent, Milo, may be found at

<aaalab.stanford.edu>.
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Orbo reflects our general methodology of integrating cognitive mechanisms. For

Orbo, we are integrating the two previous mechanisms of perceptual learning and

modeling with the mechanism of trying to understand another person’s thoughts, or in

this case, another agent’s thoughts. Students need to figure out what Orbo understands so

they can teach him most successfully.  Trying to infer the intentions behind another

person’s (or agent’s) behavior is surely one of the most fundamental and spontaneous of

human capacities, and it should be possible to leverage it for educational purposes.

In our view, there is much promise in our approach of explicitly looking for ways

to evolve integrated knowledge both for understanding the nature of learning and for

developing instructional theories that will be useful to classroom teachers and to students

once they leave the classroom. Our hope is that the example of DKE provides one

concrete instance that can help the field move in the direction of increasingly integrative

models that are directly relevant to building prescriptive cognitive theories.
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FOOTNOTES

1. We are deeply indebted to George Chang for developing (and naming) Orbo.
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TABLE 1.  A test item used to measure students’ abilities to perceive and evaluate
measures of central tendency (Schwartz & Martin, 2004).

A wealthy industrialist wrote a book describing how to make a business work.  He said the single most
important task was to hire the smartest people possible.  In particular, he suggested hiring BLUE people.
To back up his suggestion, he reported the results of a study in which he compared the intelligence of
BLUE and GREEN people.  In the study, he randomly selected 40 BLUE people and 40 GREEN people.
He gave each individual in each group an IQ test.  Here are the individual scores and the group averages:

GREEN People Scores
82, 83, 84, 86, 87, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 90, 91,
91, 92, 95, 95, 97, 101, 106, 108, 108, 109, 109, 109, 110, 110, 110,
110, 111, 111, 111, 112, 113, 115
GREEN average IQ = 98

BLUE People Scores
85, 93, 96, 97, 97, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100,
100, 101, 101, 101, 101, 101, 102, 102, 102, 102, 102, 102, 103, 103,
103, 103, 104, 104, 104, 105, 106, 106, 107, 111
BLUE average IQ = 101

Based on this data, the industrialist claimed that BLUE people are smarter than GREEN
people.  One hundred activists across the country were outraged and claimed that the
industrialist’s results were a fluke.  They each conducted their own studies by giving IQ
tests to BLUE and GREEN people.  To their surprise, the activists came up with results
that were nearly identical to the industrialist’s -- the industrialist’s results were reliable.
The industrialist published an article in the New York Times reporting the results.  He
repeated his suggestion, “If you want the smartest people to work for you, hire BLUE
people.”

How would you argue that the industrialist’s conclusions are wrong?   
Write as many arguments as you can think of in the next 5 minutes.
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TABLE 2. Examples of the simplified and contrasting data sets that students analyzed to
prepare them to learn from a lecture (Adapted from Schwartz & Bransford 1998).

Study 1

In this study, psychological researchers brought together five subjects.  The researchers
read the subjects the following list of 20 words at a rate of one word per three seconds.
Here are the words the researchers read to the subjects in the order in which they read
them:

car, sky, apple, book, cup, lock, coat, light, bush, iron,
water, house, tape, file, glass, dog, cloud, hand, chair, bag

After the researchers read these words they said: “Recall.”  When the researchers said
“Recall” the subjects wrote down as many of the 20 words as they could remember.

Here are the words the five subjects in the study recalled and the order in which they
recalled them:

Sbj #1:  bag, hand, chair, dog, car, sky, apple, book, tape, file, house, list, bush
Sbj #2:  bag, chair, hand,  cloud, sky, car, book, apple, cup, lock, iron, glass
Sbj #3:  bag, hand, chair, cloud, sky, car, apple, book, file, bush, coat, iron, tape
Sbj #4:  bag, hand, chair, dog, car, sky, apple, water, cup, glass, house, bush, dog, book
Sbj #5: bag, chair, hand, cloud, sky, car, book, coat, water, light, lock, house

Study 2

This study is the same as Study 1, except that the researchers did not tell the subjects to
recall the words immediately after reading the list of words.  Instead, the researchers
asked the subjects to do another task first (i.e., a division problem).  This task took 30
seconds.  Immediately after this task they were told to recall as many of the words as they
could, again in any order they liked.

Here are the words the five new recalled and the order in which they recalled them:

Sbj #6:  car, sky, book, apple, bush, house, glass, chair
Sbj #7:  car, sky, lock, iron, water, cloud, bag
Sbj #8:  car, apple, coat, bag, hand, file
Sbj #9:  car, sky, light, cup, tape, dog
Sbj #10:  car, apple, cup, water, glass, house
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Table 3. An example of a contrasting case the students analyzed to learn about central
tendency and graphing (Schwartz & Martin, 2004).

MAKING THE GRADE

Imagine your friend Julie is very worried about getting a good grade in Chemistry.  She
can take the class from Mrs. Oxygen or from Mr. Carbon.  Here are the grades each
teacher gave out last year.

Mrs. Oxygen:  D+, D+, C-, C-, C-, C, C, B-, B-, B-, B-, B, B, B, B, B+
Mr. Carbon: D+, C-, C-, C-, C, C, C+, C+, C+ A-, A+, A+

Which teacher would you suggest?  Create a visual representation of the data to support
your position. If your visualization from before does not work, try something new.
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FIGURE CAPTIONS

Figure 1.  Will the glasses pour at the same or different angles?

Figure 2.  The average angles of tilt for subjects who turned the glasses with their eyes

closed and imagined they had water (Schwartz & Black, 1999).

Figure 3. Examples of explicit models students invented to solve problems about chains

of causality (The construction and analogical transfer of symbolic visualizations,

Schwartz, D. L.,  Journal of Research in Science Teaching, 30.  Copyright „ 1993 Wiley

Periodicals, Inc.).

Figure 4.  Students who studied contrasting data sets were more prepared to learn from a

lecture than students who read and summarized a book chapter. (Adapted from Schwartz

& Bransford, 1998).

Figure 5.  An example of an activity where students co-evolved their perception and

symbolic characterization of variance (Schwartz & Martin, 2004). Each grid represents a

pitching machine.  The ‘X’ is the target, and the black dots indicate where each ball

landed.  Students had to invent a “reliability index” to characterize each pitching

machine.

Figure 6.  Students who had evolved their knowledge were more prepared to learn from a

resource embedded in the posttest. (Adapted from Schwartz & Martin, 2004)

Figure 7.  Orbo: A Teachable Agent for Statistics.  In the top panel a student has invented

a way to find the spread in a set of data by subtracting adjacent values and shows the

agent, Orbo, how to do it with a given data set.  In the bottom panel, Orbo applies the

method to a new data set.  Orbo does not do what the student intended.  This leads the

student to think what Orbo must have had in mind.  The answer is that in the teaching
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example, there were only four numbers, so Orbo induced that the procedure only uses

four numbers.  This alerts students to the importance of a solution that can generalize

across sample sizes.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 6.
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Figure 7.
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