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 Animations are a versatile media for displaying changes over time.  They can 

show cellular processes, a billion years of continental drift, the assembly of a desk, and 

even the invisible shifting of political tides.  Most animations depict changes to a 

situation, such as a desk being assembled.  In this chapter, we describe a series of 

software environments, called Teachable Agents (TAs) that use animations in another 

way.  Rather than displaying a situation, the TAs animate the thoughts an individual 

might use to reason about that situation.  For example, using the same well-structured 

representations as experts, TAs can visually model how to reason through the causal 

chains of an ecosystem.  This is worthwhile, because the goal of learning is often to 

emulate an expert’s reasoning processes, and animations of thought make that reasoning 

visible. For novices, learning to reason with an expert’s knowledge organization is as 

important as learning the bare facts themselves.  

We build TA systems to capitalize on the adage that an effective way to learn 

something is to teach it, and this framework has allowed us to introduce some uncommon 

uses of animation. One novelty is that students help build the animation rather than just 

watch. Students teach their TA by constructing a visible knowledge organization. For 

example, students can create a concept map that teaches their TA about a river eco-
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system.  A second novelty is that the TA solves problems based on what it was taught. 

For example, given a question about a river eco-system, the TA can visually trace its 

reasoning over the concept map.  This constitutes the animation of thought, and 

depending on the conclusion that the agent reaches, students can revise their TA’s 

knowledge and their own.  

TA environments are highly interactive.  Students share their ideas with the 

agents by teaching them. At the same time, the TAs use artificial intelligence techniques 

to solve problems independently – though still based on what they have been taught. This 

creates an environment of shared ideas and shared initiative between the student and the 

agent.  The thesis of this chapter is that the shared ideas and initiative of a TA 

environment help create an interactive “sweet spot” that optimizes motivation and 

learning.  In Sections 2 and 3 we develop the framework of this thesis, and in Sections 4 

and 5 we present relevant evidence. First, however, we take a quick detour to provide a 

concrete example of a Teachable Agent.  

1.0 A Quick Tour of a Teachable Agent 

Figure 1 shows an example of a TA named Betty’s Brain, or Betty for short (for 

instances of other agents, see <aaalab.stanford.edu>). Students teach Betty by creating a 

visual network of nodes and links comprised of qualitative causal relations (i.e., increase, 

decrease, depends-on, is-a, and has-a semantics).  Students use a point-and-click graphics 

editor to create the nodes (e.g., algae, oxygen) and links (e.g., produce). Students use 

pull-down menus to specify the qualitative relation implied by the link (e.g., algae 

increase oxygen).  The directed graph and the qualitative semantics provide a well-
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structured representation that is common among experts discussing causal propagation, 

plus it enables the students to build the thoughts that are animated when Betty reasons. 

 

 
Figure 1. The Teachable Agent Formerly Known as Betty’s Brain. 

 

Once taught, Betty can answer questions.  Students can ask Betty a question using 

a floating panel that appears when students click on the “Ask” button. Students can ask 

questions like “If <fish> <increase> what happens to <carbon dioxide>?”  Betty answers 

the question using the map. This constitutes the animation of thought – she successively 

highlights nodes and links as she reasons through the network. Changes in color indicate 

whether she is inferring an increase or decrease for each node while she progresses 

through the map. The animation is relatively impoverished, and it is probably better 

described as a dynamic directed graph.  However, unlike many animations, where 
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students need to penetrate the surface motion of the animation to learn the underlying 

principles (Lowe 1999, 2004), Betty makes the critical relations explicit and available for 

inspection.   

To answer questions, Betty uses a simple reasoning engine that adopts generic 

graph traversal algorithms (e.g., depth and breadth first search) coupled with qualitative 

inference schemes that can reason through causal and hierarchical chains (Biswas et al., 

2005).   Betty always reasons “logically,” even if the premises she has been taught are 

incorrect. This helps students learn to emulate Betty’s reasoning methods, while also 

helping students identify gaps in knowledge when Betty reaches a wrong conclusion 

based on the information they provided.  

Figure 1 shows the results of a graphical animation and a text-based response that 

Betty offers for the question, “If fish increase, what happens to carbon dioxide?”  Betty 

inferred that fish are a type of animal.  She then reasoned that animals produce carbon 

dioxide, so an increase in fish will increase the amount of carbon dioxide.  Betty can 

reason forward through much more intricate chains of causes, and she can also reason 

backward to diagnose what might cause an increase or decrease for a given entity in the 

map.  Students can also ask Betty to explain her answer. Through a multi-step animation, 

Betty decomposes her chains of reasoning as she provides answers in a sequence of steps. 

Betty can also unfold her inference through spoken dialog and a text window.  Betty’s 

responses help students reflect on the implications of the ideas they taught.  

Betty does not learn automatically by using machine learning algorithms.  Instead, 

students must explicitly teach Betty, and this teaching helps students structure their own 

knowledge.  One benefit of the TA paradigm is that it capitalizes on the well-defined 
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teaching schema that includes instruction, assessment, and remediation.  This pre-existing 

schema can help organize otherwise complex student interactions with the computer (cf. 

Schnotz, Boeckheler, & Grzondziel, 1999), much as people’s well-defined schemas for 

spatial organization inspired the desktop metaphor for computer operating systems.  With 

the TA metaphor, students bring to bear a host of prior ideas about teaching that help 

them engage the computer in complex learning interactions. Moreover, the TA’s use 

relatively simple visual representations and semantics, and this make it easier for novices 

to start interacting with their agents, compared for example, to environments that use 

more general purpose programming constructs (Smith, Cypher, & Spohrer, 1997).   

 The Betty “kernel” shown in Figure 1 provides basic functionality in a modular, 

agent architecture (Viswanath, Adebiyi, Biswas, & Leelawong, 2004).  This permits us to 

integrate her into more complex applications and environments.  We do not envision 

Betty as the only means of instruction; students need to learn what to teach Betty from 

somewhere else.  Rather, Betty helps novices abstract and reflect upon important 

knowledge structures.  We provide three quick examples of how Betty can integrate with 

other environments.  

The first example is a guided-discovery video game called Pumpkin World ( Blair 

& Schwartz, 2004; Hartman & Blair, 2005). Figure 2 provides a sample screen shot.  

Betty takes the form of an embodied agent in a virtual world. Students teach Betty to 

grow giant pumpkins (so villagers have a place to live).  There are other agents with 

whom Betty interacts (e.g., a store owner, a passer-by), and she can directly affect her 

world (e.g., she adds nitrogen, if she infers the pumpkins need it).   
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Figure 2.  Betty in a guided-discovery videogame application.  The window in 

the corner shows Betty reasoning about a challenge in the game world. 

 

There are many potential benefits of bringing videogame graphics and narratives 

to learning. They can enhance engagement and a sense of place, plus animated agents 

offer ways to present non-verbal cues for interaction (Lester, Stone, & Stelling, 1999; 

Rickel & Johnson, 1998; Tepper, Kopp, & Cassell, 2004).  Equally exciting to us, video-

worlds provide a felicitous environment for supporting the many ways that people learn.  

In Pumpkin World, students learn about the role of nitrogen through simulated 

experiments; they learn about phosphorous by observing a passer-by; they learn about 

“energy” by listening to the store owner; and so on. Betty serves the role of helping 

students organize their learning into a well-structured representation of how to reason 

about pumpkin growth. To nudge students to the different learning resources at the right 
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time, a background planning system makes decisions about what topic to guide the 

student/agent team to learn about next (e.g., it opens a “game booth” that holds new 

information when Betty is prepared to learn a new concept).  Hence, the name, “guided 

discovery games.”  

Our second example is an on-line game show designed to change homework 

practices. In the Triple-A Game Show, developed with Paula Wellings, a student teaches 

an agent and customizes its looks. The student and agent then participate in an on-line 

game show with other students and their agents (Figure 3). Students can log on from 

home or from school.  The game host asks the agents to answer questions and explain 

their reasoning.  The application also includes a chat environment so students can discuss 

and cheer (or jeer) an agent’s performance.  Students can also teach their agent a portion 

of a domain and then “jigsaw” with other agents by merging concept maps to create a 

Team Betty (Sears & Schwartz, 2004).  Our hope is that students will find this socially 

rich environment both engaging and educative, and it will prepare them for their lessons 
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in school the next day or the next week.  

 

Figure 3. A customized agent performs in an on-line game show with other students 
and agents. 

 

As a final example of how TAs can be extended, we developed a front-of-the-

class assessment environment that can be projected on a large screen.  In Figure 4, each 

panel shows an agent map created by a student.  The classroom teacher can ask a 

question of all the agents simultaneously.  A hidden expert map determines the correct 

answer and compares it to each agent’s answer.  The results are tabulated and indicated 

by color coding (red = incorrect; green = correct; yellow = correct for wrong reason).  

The classroom teacher can zoom in to show why an agent gave the answer it did, and 

then compare it to another map.  If we shed the TA metaphor, one way to think of this 
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system is that students are creating executable models, and then the models get tested.  

So, rather than the student answering a small subset of questions, the student needs to 

create a model that can answer any legitimate question in the domain.  In a formal study 

in college classrooms, we found that the front-of-the-class system significantly helped 

students learn complex relations compared to just seeing the performance of their own 

agent.   

 

 
Figure 4. Front of class quiz system for showing agents perform. 

 
   

 2.0 A Framework for Achieving a Learning Sweet Spot in Interactivity 

Our thesis is that there is an interactive “sweet spot” for learning that applies to 

TAs and beyond.  TAs operate under a social model of interactive learning rather a 

physical one.  Often times, discussions of interactivity tacitly borrow from models of 

physical interaction, where people probe a stable environment to help induce its 

underlying rules or causes.  These models lead designers to focus on the contingency of 
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the system; for example, is timely feedback more useful than delayed feedback (e.g., 

Mantosh & Koedinger, 2003)?  Social interactivity presents a different root metaphor that 

supports a host of new interactive possibilities (e.g., Moreno, Mayer, Spires, & Lester, 

2001).  For example, Deutsch (1973) describes the minimal criteria for cooperative 

interactions, “A cooperative process is characterized by open and honest communication 

of relevant information among participants.  Each is interested in informing, and being 

informed by, the other” (p. 29).  One does not think of a physical environment as having 

interests or communicative intents, but with a social model of interaction it is possible.  

For example, we have found that children take responsibility for their TA’s interests. 

Children willingly study more to revise their agents so they can pass a test they failed, 

something students are not always willing to do for themselves (Biswas et al., 2001). 

We propose that there is a sweet spot of social interaction that generates both high 

motivation and high learning.  The defining quality of the sweet spot is that participants 

can produce, share, and see their ideas reflected, transformed, and acted upon by another 

person (or agent).  Elsewhere, we review the motivational basis of the sweet spot, which 

we termed productive agency (Schwartz, 1999).  For example, the most satisfying 

academic conversations occur when people acknowledge and give credit to one another’s 

ideas, and then build on them in a way that new ideas emerge. The least satisfying 

interactions occur when the participants do not listen to each other, or one has no agency 

to produce or share ideas at all. 

 For learning, there are two key dimensions to sweet spot social interactions: 

initiative of action and inclusion of ideas.  Figure 5 presents a qualitative portrayal of the 
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two dimensions.  The circle in the center reflects our proposal that optimal novice 

learning occurs when initiative is shared and ideas are merged among participants.   

   

 

Figure 5. Two dimensions of interactivity relevant to novice learning.  Each 
dimension captures the degree to which the self and another person or technology 
engages the interaction. The examples in each corner represent non-interactive 
experiences from the perspective of the learner.   
   

 The vertical dimension of interaction – inclusion – captures the degree to which 

participants incorporate and merge their ideas with one another.  People often adopt one 

another’s words and gestures (Bernieri & Rosenthal, 1991; Brennan, 1996). This can 

draw them closer together (Bailenson & Yee, in press), and the opportunity to see how 

people modify one’s idea can be highly informative. Steiner (1972) reviewed the 

literature on small group interactions and found that tasks that permit the cumulative 
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building of ideas improve group performance. Moreover, when participants merge their 

ideas, they can co-create ideas that neither would have developed alone (Schwartz, 1995).  

However, if participants cannot include their ideas or see another person’s ideas, these 

benefits will not occur. 

The second dimension of interactivity – initiative – captures the degree to which 

each participant can guide the interaction and take independent action.  Cassell (2004) 

demonstrated a story-telling system where young children and an embodied 

conversational agent took turns creating a narrative, and this improved the children’s 

linguistic skills. Permitting other people to take the initiative offers alternatives to one’s 

own inertia. It also generates “projective” feedback by revealing the variations another 

person applies to one’s ideas.  Coaches, for example, may learn a great deal by watching 

their players take the initiative to adjust a play during a game.  In contrast, when an 

interaction is characterized by an imbalance of initiative there is less learning.  Barron 

(2004) found that small groups that blocked the initiative of one of its members often 

failed to capitalize on the correct ideas that the individual provided, and therefore, the 

group members did not perform or learn very well.  

Inclusion and initiative are especially important for early learning.  Experts who 

have well-structured knowledge and a wealth of prior experiences can learn by quietly 

watching or listening.  Novices do not have equal knowledge, and they may need more 

interactive opportunities. An example of an infant-mother dialog can further clarify the 

sweet spot: 

Son:  Ball. 

Mother: You want me to get the ball? 
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Mother: That is an apple. 

Son: Apple? 

The child initiates the exchange and includes an idea (ball) into the joint space.  In 

turn, the mother builds upon the child’s ideas, so the child can both recognize his original 

idea and what is new in what the mother says (apple).  The mother’s initiative is relevant 

to the child’s own, and this helps the child see the implications of his initiative (e.g., If 

you want an object, then you have to give it the right name.)  The recursive structure of 

the exchange, shown in Figure 6, makes new information from the mother more 

comprehensible to the child and leads to better learning.  Tomasello and Farrar (1986), 

for example, demonstrated that infants learn object names more effectively if the mother 

labels an object the child is handling compared to a situation where the mother labels an 

object she is handling.  

 

Figure 6.  A schematic notation of the mother-child interaction.  Arc S1: The 
son initiates the exchange and includes an idea into the joint space.  Arc M2(S1): The 
mother incorporates the child’s intent and takes the initiative to turn the conversation into 
an object naming lesson. She introduces her name for the object. Arc S3(M2(S1)): The 
child picks up the mother’s meaning and tentatively renames the object.  

 

Teaching involves interactions that can create a sweet spot (for reviews, see 

Biswas et al., 2001, 2005; Renkl, 1995).  Learning through peer-tutoring (Cohen, Kulik, 

& Kulik, 1982) and reciprocal teaching (Palincsar & Brown, 1984) can be highly 

S1 

M2(S1) 

S3(M2(S1)) 

 Son Mom 
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effective.  Many graduate students have stated that they never really understood statistics 

until they had to teach it.  Teachers naturally have the initiative and include their ideas 

into the interaction.  At the same time, good teachers reflect on how students build on 

those ideas and how students take the conversation in new and unexpected directions.  

This can help teachers to see new implications and connections, to seek out new sources 

of examples and evidence, and to abstract out more fundamental structures in their own 

knowledge.  Teachers may find that they need to rethink how they describe a domain, and 

this can result in a search for more effective explanatory structures. 

Of course, not all teachers and students find the sweet spot. Teachers may be 

overly didactic, and as a consequence, they will not learn much in the act of teaching.  

Students may also fail to contribute to the interaction.  Moreover, if inexperienced 

children are asked to teach, they may not have sufficient skills to keep teaching 

interactions in the sweet spot.  This is one reason why TAs can be valuable. TAs help to 

avoid a potential problem of peer-teaching, where students are put at risk if the child-

teacher, or the child-pupil, are not very good.   

3.0 Putting the Sweet Spot into Technology 

 When creating interactive technologies, different considerations become 

important depending on one’s guiding model of interaction. Technologies that simulate 

conversational interactions, for example, need to tune the timing and complexity of the 

responses they generate. In our work, we do not try to generate sophisticated natural 

language interactions or realistic agents embodied with human traits. Our goal is to 

design and implement interactive environments that are sufficient to elicit social schemas 

that can engage the sweet spot for learning and leverage animations of thought.  
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 Interactive technologies and their animations can optimize the two dimensions of 

interactivity to varying degrees. Simply watching an animation would be low on student 

initiative and ideas.  Though students must take some initiative to watch and interpret the 

animation, they cannot substantively alter the course of the interaction, and their primary 

task is to extract information from the animation rather than contribute to it.  For novices, 

it is not clear that passively viewing an animation yields superior learning compared to 

studying a well-crafted still image (Tversky, Morrison, & Betrancourt, 2002).  Enabling 

novices to slow down or replay segments of an animation improves the balance of 

initiative and should help (Lowe, 2004), but the animation still does not include the 

students’ ideas.   

 Intelligent computer tutors are another important interactive technology for 

learning (e.g., Koedinger & Anderson, 1998).  The student and the system share the 

initiative, because the student has some latitude in how to solve problems, and the system 

has the latitude to redirect the student and introduce problems.  However, the computer 

tutor does not merge ideas with the student. The explicit goal of the program is to entrain 

the student into its way of thinking.  Computer chess programs and other learning games 

are similar in that they share initiative with the player. However, whereas a tutor program 

explicitly enforces its ideas, a chess program explicitly hides its ideas.  A novice, who 

cannot infer the chess program’s underlying strategy, may learn less than if there were a 

shared representation of the program’s strategy. 

 In designing TA’s, our goal is to foster the sweet spot. We believe this goal is 

implicit in other learning systems that use agents that are neither completely ignorant nor 

all-knowing (e.g., Learning Companions, Chan, 1995; Peoplepower, Dillenbourg & Self, 
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1992). TA’s, however, are explicitly designed to support the merging of ideas.  Students 

provide the facts of the matter, and the TA provides conventional knowledge structures 

and reasoning mechanisms in the form of dynamic visual representations.  For example, 

students introduce concepts to Betty, but they use Betty’s directed graph structure to 

organize those concepts.  Betty then animates how she reasons with their shared 

representation.  Our assumption is that this visible merging of student ideas and agent 

reasoning helps students adopt the TA’s knowledge structures to organize and reason 

with their own concepts.  The two studies in Section 4 test this assumption. 

 The TA’s also have provisions for shared initiative. Each TA has the ability to 

take independent actions based on how it has been taught.  For example, Betty can 

answer questions.  This permits students to reflect on Betty’s reasoning, and we suppose 

this helps them learn more deeply.  It is also possible to enhance a TA’s initiative beyond 

answering questions, and the two studies in Section 5 examine the value of enhanced 

shared initiative.   

4.0 Empirical Studies on the Dimension of Inclusion 

Two studies explored whether merging ideas and representations with Betty leads 

students to adopt her knowledge organization.  Both studies used the basic Betty kernel to 

teach about biological systems. Biological systems are well-suited to Betty’s qualitative 

causal reasoning. 

4.1 Study 1:  Adopting the structure of the agent’s thoughts 

 The first study examined whether learners incorporate Betty’s knowledge 

structure into their own. The study complements research on the positive benefits of 

concept mapping (e.g., Kinchin & Hay, 2000; Novak, 1998).  However, Betty differs 
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from most concept-mapping activities, because she enforces semantic relations that 

students might otherwise violate in paper and pencil activities.  For example, students 

often use concept map links to indicate a vague notion of “related to,” whereas Betty 

requires students to use semantics that enable her to reason about causality (e.g., increase, 

decrease).  Plus, Betty shows the implications of those relationships by answering 

questions, something concept maps, by themselves, cannot do.  

Sixteen undergraduates read a four-page passage on metabolism. Half of the 

students were assigned to the Summary condition. They wrote a summary of cell 

metabolism. They were told to write about things like the relation between ATP 

resynthesis and lactic acid.  Students in the Betty condition taught Betty about cell 

metabolism. They were shown how to teach and query Betty using the ATP – lactic acid 

example.  We videotaped the sessions and asked the participants to think aloud.  All 

Betty students worked to the cutoff point of 40 minutes. The Summary students averaged 

32 minutes of work.  

 During the session, the Betty students were much more attentive to issues of 

causality than the Summary students. Every Betty student, but only one Summary 

student, recognized that they had been thinking in terms of correlations rather than 

causation. For example, one Betty student realized that he did not know whether 

mitochondria increase ATP resynthesis or vice versa.  Three-fourths of the Betty students 

considered the size of a causal effect, whereas none of the Summary students considered 

amounts of change.  For example, one Betty student taught Betty that (a) oxygen 

increases ATP resynthesis, and (b) lactic acid inhibits resynthesis. This student wondered 

whether oxygen and lactic acid cancelled each other out. 
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 As a simple posttest, we removed all the materials and gave students a paper with 

five metabolism terms (e.g., mitochondria, lactic acid, etc.). For each term, students had 

to “list relations to other entities and processes in cellular metabolism.”   Students in the 

Summary condition tended to assert single relations; for example, “mitochondria increase 

ATP resynthesis.”  Students in the Betty condition tended to assert chains of two or more 

relations; for example, “mitochondria with glycogen or free fatty acid increase ATP 

resynthesis.”  On average, the Betty students produced 3.75 chains of two or more 

relations, compared to 1.0 for the Summary students (p < .05).  It is possible that the 

Summary students also learned about complex causal pathways, and they simply did not 

think it was important to include them in their lists.  Even so, we can reiterate that the 

Betty students incorporated Betty’s way of thinking and took that incorporation as an 

important task demand. 

 In summary, Betty influenced the students’ own knowledge.  The Betty students 

became aware that they had not sufficiently differentiated between causation and 

correlation when reading the passage.  In contrast, writing a summary drew attention to 

issues of topic sentences and paragraphing.  Teaching Betty also influenced how students 

structured their own knowledge. When asked to list relations, the Betty students tended to 

list complex causal pathways as compared to the Summary students. These results make 

sense because developing chains of causal relations is exactly what Betty illustrates and 

requires.  The results demonstrate that merging ideas with Betty can shape students’ 

domain knowledge.   

4.2 Study 2: The benefit of animated thought 
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 The first study demonstrated that students adopt Betty’s representations, but it did 

not isolate the value of animating Betty’s thoughts.  In the study, we compared teaching 

Betty to writing a summary.  Maybe simply asking students to draw a concept map would 

work as well as teaching Betty.  Therefore, we conducted a second study to see if Betty’s 

animations make a difference for whether students’ incorporate her reasoning structures.  

 Twenty-five 5
th
-grade students taught Betty about river ecosystems across three 

one-hour sessions.  Students had online resources to help them learn the relevant content 

needed to teach Betty (see Biswas et al., 2004).   In the Animation condition (n = 13), 

students could ask Betty questions and activate her animations. In the No Animation 

condition (n = 12) students simply made Betty’s map without ever asking questions and 

seeing the map animate. Thus, both conditions used Betty’s formalism, but only the 

students in the animate condition saw how Betty incorporated their ideas into her 

reasoning.   
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       Figure 7.  Students who see Betty animate her reasoning add more causal links.  
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 Figure 7 shows that students in the Animation condition generated maps that 

accumulated more causal links; F(1, 23) = 4.24, MSe = 15.7, p < .05. This makes sense 

because Betty animates causal chains in her reasoning. Evidently, animations of thought 

make a difference.  This is a useful finding, because Tversky, Morrison, and Betrancourt 

(2002) found that static diagrams can be as effective as animations.  However, their work 

did not examine the interactive potential of animations, which in the current study was 

more useful than static drawings.  Merging ideas into an animation can help students 

learn to think with the structures that drive that animation. 

5.0 Empirical Studies on the Dimension of Initiative 

 The previous studies examined the joint inclusion of ideas.  These studies used the 

basic Betty kernel, which is relatively low on initiative.  It only re-acts and responds to 

the student when asked to do so.  For novices, this relatively simple initiative can appear 

to yield choice-filled behavior in the TA, because the performance setting provides 

complexity (Simon, 1996).  Even so, the TA is still reactive. In the next two examples, 

we capitalize more fully on the TA metaphor for enhancing shared initiative. The studies 

also raise the standard for demonstrating that students learn.  In the previous studies, we 

largely inferred what students learned based on the maps they created or the reasoning 

they applied while creating the maps.  In the following studies, we measure student 

learning once they have left the original environment of teaching.  

5.1 Study 3: Shared initiative to promote metacognition 

 In exit interviews from our previous Betty studies, the students often emphasized 

that they would have liked Betty to take more initiative and exhibit characteristics of a 
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good student during the teaching phase.  One student, for instance, wanted Betty to “react 

to what she was being taught and ask questions on her own.”   Our assumption is that 

people learn more by teaching when their pupils can introduce their own issues. Tutors, 

for example, gain a deeper understanding when they answer tutee questions, explain 

materials, and uncover misconceptions (Chi et al., 2001; Graesser, Person, & Magliano, 

1995; Uretsi, 2000).  

 For children, an agent that initiates a discussion about its learning can be 

especially valuable, because children have fewer metacognitive skills for managing 

learning interactions.  Hegarty (2004) argues, “Since it is clear that not all students have 

the necessary metacognitive skills to learn effectively from interactive media, teaching 

students to use interactive media effectively may lead to greater improvements in 

learning outcomes than changing the medium of instruction” (p. 348).  If an agent can 

take the initiative to model how it monitors its own thinking, this may help students learn 

to perform this type of metacognition (Lin & Lehman, 1999; Palinscar & Brown, 1984). 

Shimoda, White, and Frederiksen (2002), for example, developed metacognitive coaches 

that students can modify to give hints for managing their scientific investigations, and 

Baylor (2002) found that agents can improve pre-service teachers’ meta-cognitive 

awareness. 

 To address these issues, we gave Betty’s initiative over how she is being taught, 

and we put her into a larger performance environment (Biswas et al., 2005).   Under 

specific conditions, Betty spontaneously offers a meta-cognitive strategy or concern.  For 

example, as students build Betty’s map, she occasionally starts animating her map to 

draw inferences. She then remarks (right or wrong) that the answer she is deriving does 
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not seem to make sense. These spontaneous prompts help students reflect on what they 

are teaching, and hopefully like a good teacher, check on their tutee’s learning progress 

(and their own).  Table 1 provides some examples of the actions Betty initiates and under 

what conditions. 

 
Table 1. Examples of Betty Taking Initiative. 
Student 
Action 

State of System Samples of Betty’s Dialog 

Student has not asked 
Betty a question since 
the last quiz. 

“I still do not feel prepared to take a quiz. I don't 

understand enough about the causal relationships 

in the river. Please ask me some causal questions to 

see if I understand. Mr. Davis can help you learn 

more about being a good teacher.” 

 
Tell Betty 
to take a 
quiz 

Betty’s answers have 
changed since the  
last quiz 

“What you have taught me has changed my 

thinking. I had some questions right on the quiz, 

but now I think I would answer them wrong.” 

First causal link in 
the session 

“Hey! Let me see if I understand this.” (Betty 

reasons with link, and explains her reasoning) 

Add a link 
to Betty’s 
concept 
map 

First causal path with 
two or more links 

“OK. I think I know how this works.”  (Betty 

reasons with path, and explains her reasoning) 

 

 The meta-cognitive Betty environment comes with a number of other assets, 

including online resources for learning content, quiz sets, and a mentor agent named, Mr. 

Davis.  Mr. Davis helps to complete the teaching narrative, because he administers and 

grades Betty’s quizzes.  Mr. Davis also provides meta-cognitive tips when students ask 

for help.  Mr. Davis does not give factual answers, but rather, he suggests strategies.  As 

instances, he can suggest which of the online resources is helpful for a particular concept; 

how to be a good teacher (e.g., “test Betty and examine her answers closely”); and, how 

to be a good learner (e.g., “set goals”). 

 To evaluate the benefits of shared-initiative, 54 5th-grade students worked for five 

45-minute sessions on river ecosystem concepts.  The study included three conditions.  In 



 23

the Shared-Initiative Teaching condition, students worked with the enhanced Betty 

system.  Students taught Betty so she could pass a test to become a member of a school 

science club.  In the Basic Teaching condition, students also prepared Betty for the club 

test, but Betty was similar to the prior studies where she simply took a quiz and answered 

student questions when asked. Mr. Davis did not provide tips on teaching and learning. 

Instead, he provided feedback to Betty on each quiz question.  Finally, in the Being-

Taught condition, there was no cover story of teaching an agent, and Betty was not 

present in this environment.  The students simply had to construct a concept map.  Mr. 

Davis told the students to construct concept maps to demonstrate their learning. They 

were told to examine the quiz questions as a guide for what to learn.  Students could ask 

Mr. Davis if their concept map was correct for a given quiz question. Mr. Davis would 

tell the student the correct answer and provide directive feedback for how to correct the 

map.   Thus, the Being-Taught condition replicated standard computer-based instruction, 

where the computer has the initiative to teach and test the student. 

 After students completed the five sessions, they drew their maps from memory.  

The maps from the three conditions looked about the same. This result was not a surprise, 

because the students had worked for a long time developing their maps in each condition. 

This was not where we expected to find the difference between the conditions. 

 Our hypothesis was that the Shared-Initiative condition would show its benefits 

later.  We thought the meta-cognitive emphasis would prepare students to learn about a 

new, related topic.  Because the Shared-Initiative students interacted with Betty’s 

metacognitive strategies, we thought they might incorporate those strategies when 

learning new content.   
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 A month after the instructional intervention, students had two new sessions on the 

land-based nitrogen cycle. Students had not been taught about the nitrogen cycle, so they 

would have to learn from resources.  Students from all three conditions completed this 

“learning at transfer” task (Bransford & Schwartz, 1999) in the same environment, so any 

differences would be due to what had happened a month before.  They all used a 

modified Being-Taught environment that did not include directive feedback. Mr. Davis 

simply told the students whether their map was right or wrong when they asked a 

question or took a quiz.  

 Table 2 shows that students from the Shared-Initiative condition learned 

significantly more about the nitrogen cycle as reflected in their concept maps. Their 

performances were still relatively low, but learning about the nitrogen cycle on their own 

in two sessions is a difficult task for 5th-graders.   

 
Table 2: Quality of Student Maps when Learning about Nitrogen Cycle at Transfer. 
 
Student Maps Included: 

Shared-Initiative 
M    (SD) 

Teaching 
M   (SD) 

Being Taught 
M   (SD) 

Expert Concepts 6.1a  (0.6) 5.2  (0.5) 4.1  (0.6) 
Expert Causal Links 1.1ab  (0.3) 0.1  (0.3) 0.2  (0.3) 
Note: a Significantly greater than Being Taught; b Significantly greater than Teaching. 
 

 The log files help explain the advantage of the Shared Initiative students on the 

learning posttest.  Across the five river ecosystem sessions, the Shared Initiative students 

increasingly asked Betty to answer questions about chains of causes. By the fifth session, 

theses students had asked three times as many causal questions as the Being Taught 

condition.  During the learning posttest on the nitrogen cycle, the Shared Initiative 

students asked twice as many causal questions as the Being Taught condition, even 

though Betty was no longer mixed initiative.  In other words, sharing the initiative does 
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not reduce the students’ overall initiative, but rather it increases it. Meta-cognitive Betty 

led the students to increase their initiative to ask her questions, and this carried over, so 

that the students exhibited more learning initiative a month later when they had to do it 

on their own. 

5.2 Study 4: The importance of independent performance 

 In the final study, we carefully isolated the value of agent initiative.  In this case, 

the agent does not initiate interactions with the student, but instead, it interacts 

independently in another context after it has been taught. The description of the study 

takes some extra prose, but we think it is worthwhile.  The study demonstrates that when 

learners solve problems themselves and construct representations, they do not learn as 

well as when they construct the exact same representations (to teach) and then see the 

agent perform based on those representations.   In other words, “watching” within the 

sweet spot can be more effective than doing it oneself outside the sweet spot.   

 To motivate this finding, consider dissertation defenses in Sweden.  The doctoral 

candidate does not answer questions directly. Rather, there is an advocate who answers 

questions based on what the candidate wrote in the thesis.  The advocate’s ability to 

defend the thesis depends on the candidate, but the advocate has the initiative to decide 

what to say. We assume this situation leads to much more careful thinking and writing by 

the candidate. When people teach somebody else who has to perform, they cannot count 

on their “situational smarts” to generate answers on the fly or sidestep challenges as they 

arise.  They need to formalize their knowledge in a clear and unambiguous way.  

Moreover, by seeing how their students perform, for example, as the students answer 
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questions from an outsider, teachers receive projective feedback, and this provides an 

opportunity for additional reflection (plus a sense of responsibility). 

5.2.1  Moby: A Hypothetico-Deductive TA  

 To explain how we implemented the experimental contrast, we need to take a 

second detour to describe the TA named Moby.  Moby helps students learn science 

through a hypothetico-deductive process.  Scientific reasoning is notoriously problematic 

(e.g., Kuhn, 1995), so we decided to see if the TA paradigm could help students learn 

about deduction and induction. 

 With Moby, students construct visual representations of empirical hypotheses, 

and Moby makes predictions based on these representations.  This is consistent with our 

emphasis on making thinking visible. Thus, Moby should be characterized as a 

hypothesis visualization tool rather than a data visualization tool (e.g., Gordin & Pea, 

1995).    

 

 
Overlay Water 

 
Overlay Sun 

Figure 8. Two examples of a student revealing a factor to induce the conditions that 
cause an outcome.  
 
 Moby resides in a game environment. Students need to complete rounds so they 

can progress to the next level of difficulty.  Each round has four phases:  Induce  
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Predict  Teach  Observe.  Each round begins with Induce. Students receive a grid 

with a target outcome appearing in various cells. For example, the appearance of flowers 

is the target outcome in figure 8. There are four factors that might be responsible for the 

outcome.  Students click through the various factors to see where they appear in the grid.  

In the left panel of Figure 8, a student has revealed a factor (water) that is not responsible 

for the outcome (flowers).  In the right panel, the student has revealed the correct factor 

(sun).  The underlying rule for the grid in Figure 8 is, “Sun is necessary and sufficient for 

a flower to appear.”  A rule, however, can be much more complicated; for example, “Fire 

or shade is sufficient but not necessary for the absence of a flower.”   To help students 

find multi-factor rules, they can reveal the locations of two factors at a time.   

 

 
Figure 9.  Students play against Joe to see who can better predict outcomes.  
Students overlay factors to guide their predictions.  In this example, the student 
hypothesizes that Water and Shade are involved and reveals the location of both. 
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After students believe they have induced the rule for a given round, they move to 

the Predict phase.  In the Predict phase, they play against another agent named Joe. The 

game generates a new grid (based on the same rule). The grid, however, does not show 

the outcomes (e.g., flowers).  Students need to predict which cells have the target 

outcome based on their hypothesis.  To do this, they reveal where the relevant factors 

appear on the grid.  Wherever they see the factor or factor combinations that they believe 

cause the outcome, they can click on that cell to see if the outcome is present.  If they are 

correct, a smiling face appears. If they are wrong, a frowning face appears.  A scoreboard 

keeps a tally.  After the student takes a turn, Joe takes a turn, then the student, and so on, 

until all the outcomes have been found.  Figure 9 shows a student and Joe in mid-game.  

Joe has the wrong rule, and most of his predictions are incorrect. The student has 

revealed two factors to guide her predictions, but she has the wrong rule as well.  Based 

on the student’s performance playing the prediction game against Joe, she can return to 

the Induce phase to refine her rule or move on to the Teach phase. 

In the Teach phase, the students’ visual understanding of a hypothesis gets 

merged with Moby’s formal representations. Figure 10 shows there are two 

representations that students use to teach Moby.  In the top of the figure, the students 

merge their visual rule into Moby’s propositional representation.  Using pull down 

menus, students choose factor(s), their combination, and the qualifier that governs their 

relation to the outcome (Necessary, Sufficient, Necessary and Sufficient).  In the bottom 

of the figure, the students teach using a matrix representation.  After choosing the 

factor(s), the students fill the cells with (A)lways, (S)ometimes, (N)ever, indicating when 
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flowers appear in these cells.  If students are inconsistent between the two 

representations, Moby says he is confused and asks them to try again.     

 
Figure 10. Students teach Moby using propositional and matrix formats. 
 

After students teach Moby, they move to the Observe phase. They watch Moby 

play the prediction game against Joe.  This constitutes the major initiative and 

independent performance of the TA.  Moby’s animation consists of choosing factors and 

making predictions based on the rule he was taught. If Moby consistently loses to Joe, 

students need to re-teach, and if necessary, return to the Induce phase to develop a new 

hypothesis.  If Moby wins twice in a row, students get to move to the next round and a 

more complex rule.   

5.2.2  Isolating the significance of agent initiative 

 Moby permitted a unique test that parceled out the value of the TA’s capacity for 

solving problems on its own from other aspects of the TA’s (e.g., visual representation).  

Ninety-four high school students were assigned to four conditions.  In the Control 

condition, students never used the software and simply took a posttest. In the other three 

conditions, students played the game for about 90 minutes progressing through the 



 30

rounds of increasing difficulty.  In the Teach condition, students completed the full cycle 

described above. They merged their ideas into the formal representations, and they saw 

Moby take the initiative to play against Joe.  In the Represent condition, students 

completed the Induce and Predict phases. When they beat Joe twice in a row, they filled 

in the representations from the Teach phase. However, they did not complete the 

representations in the context of teaching, and there was no independent initiative of the 

agent for them to observe.  They were simply expressing the rule they had learned, and 

then they moved to the next level.  Thus, these students were merging their knowledge 

into a formal representation, but they were not sharing initiative. Finally, in the Explain 

condition, students also completed the Induce and Predict phases. After beating Joe twice 

in a row, a text window asked them to explain the rule they had used, and they progressed 

to the next level.  They did not see the formal representations and simply had to find a 

way to express the rule in words. Thus, these students neither merged their knowledge 

into a formal representation nor did they see any agent initiative.   

If the initiative of the agent to perform independently is a valuable aspect of 

animations of thought, then we should expect the students in the Teach condition to do 

the best on the posttest, even though students in the Represent and Explain conditions had 

to induce, use, and formulate rules too. The students in all three software conditions 

reached the same game level in the same amount of time, so we can be sure there is not a 

time on task or relative exposure confound.     

A few days after using the system, students took an 18 question posttest that 

included three classes of questions. Induce questions asked students to infer a rule given a 

combination of factors and outcomes. Imply questions provided a rule, and students had 
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to deduce the implications.  Translate questions asked students to convert between tabular 

and verbal expressions of a rule. 

 
Figure 11. Students in the Teach condition were significantly more accurate on all 

question types. 
 

 Figure 11 shows the posttest performance.  The Teach condition produced 

significantly better performance across all three types of measures compared to each of 

the other conditions, F(3, 90) = 4.9, MSe=.04, p < .01.  None of the other conditions were 

significantly different from one another, despite the apparent descriptive differences.   

 The fact that the Teach students did better than the students who played and 

passed similar levels, but without teaching, is an important result.  It shows that seeing a 

TA perform with feedback is more valuable than just working on problems by oneself 

and receiving feedback. Moreover, it showed that agent initiative is important for cashing 

in the value of merged representations. Students in the Represent condition merged their 

ideas with the same representations as the Teach students did. Even so, the Represent 

students did not reap the benefits of this merging. The Express students, who never saw 

these representations, did about the same as the Represent students.  This fits our story 
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that the sweet spot of interactive learning occurs when there is both the merged inclusion 

of ideas and a shared initiative in action. 

 More broadly, these results suggest one possible learning benefit from 

programming simulations in general, and not just TAs. Simulations require a full 

specification of one’s knowledge.  The “run” of the simulation then provides independent 

performance and feedback that is not prone to subtle, situation-specific reasoning that can 

yield successful results but for the wrong reasons.  To our knowledge, there has not been 

a direct test that compares the benefit of a simulation versus an otherwise equivalent 

activity of solving problems and formalizing one’s knowledge, so the current results may 

have some value beyond the specific demonstration of the value of TA’s. 

6.0 Conclusions 

 Learning brute empirical facts is important, but for novices, learning to think with 

the expert’s organization of those facts is equally important.  Making thinking visible 

through animations can help.  We assume that learning from an “animations of thought” 

can be enhanced by making the animations interactive.  So, rather than having students 

only watch animations that demonstrate canonical forms of reasoning, we implemented 

the Teachable Agents where students help to create and query those animations. Students 

teach a computer agent, and then see the agent animate its thinking based on how it has 

been taught.  Our TAs are particularly thin in human-like appearance and behavior, but it 

never ceases to surprise us how readily children (and adults) are willing to adopt and are 

motivated by the fiction of teaching another person (cf. Reeves & Nass, 1996).  However, 

even if they do not buy into the fiction, they can still draw upon the well-known teaching 

schema to guide their learning interactions.  
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 The TA’s rely on a schema of social interaction, and, therefore, we developed a 

framework for guiding decisions about the design of TA interactions.  We argued that 

there is a sweet spot of learning interactions that is characterized by (a) how much 

participants include and reflect one another’s ideas, and (b) how much there is shared 

initiative for taking actions.  In four studies, we examined whether interactive animations 

that targeted a sweet spot led to superior learning.   

 By design, TAs support a merging of ideas in an interactive context.  Students 

provide domain specific content, while the agent provides canonical knowledge 

representations and reasoning.  Each agent is designed to model a specific form of 

reasoning, and each agent implements a specific reasoning algorithm and associated 

representation.  TAs are not as complete or powerful as general-purpose programming 

languages.  While this limits a TA’s expressiveness, it also helps novices quickly engage 

a model of reasoning that is suited to initial domain learning. The first study showed that 

students adopted the representation of Betty, a qualitative reasoning agent. The second 

study showed that, given a chance to see Betty reason, students incorporated her causal 

reasoning compared to students who simply built a static causal map.  Animations of 

thought, at least in an interactive context, help students learn. 

 TA’s afford different levels of shared initiative depending on the particular 

implementation.  The basic architecture of a TA always includes the capacity for (a) 

being taught so the student has initiative, and (b) acting upon what it has been taught so it 

also has initiative.  This bit of shared initiative is helpful. (Students who saw Betty 

answer questions used more causal reasoning than those who did not).  Nevertheless, it is 

possible to enhance the shared-initiative to improve learning even more.  So, in the third 
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study, we compared three levels of shared initiative: Being Taught (lowest), Teaching 

(middle), Shared-Initiative with a meta-cognitive Betty (highest).  The systems looked 

equally effective in the short run, but when we tested the students after a month, the 

Shared-Initiative students showed the greatest readiness to learn.  The posttest in this 

study is of particular note.  A goal of most conceptual instruction is to prepare students to 

learn in the future (Bransford & Schwartz, 1999).  Except for the narrowest of training, 

no amount of schooling can provide students all they need to know, and they will need to 

learn.  Therefore, it is important to use assessments of students’ preparation for future 

learning, lest we miss the true value of an instructional approach.  For example, had we 

not examined the students’ abilities to learn new content, the value of sharing initiative 

with a metacognitive agent would have been missed. 

 In the final study using a hypothetico-deductive agent, we found strong evidence 

for the added-value of an agent that can initiate actions.  Students who saw their agent 

perform did better on a posttest of hypothetico-deductive reasoning compared to students 

who otherwise completed the exact same activities of inducing, testing, and formalizing 

rules.  Notably, the opportunity to merge ideas with the formal structures provided by the 

agent did not benefit students if they did not also get to see the implications of those rules 

played out in the behavior of an agent.  The sweet spot of interaction requires both the 

merged inclusion of ideas and the sharing of initiative. 

In conclusion, much of the research on animation has focused on animations that 

portray continuous changes to a referent domain.  This application of animation has 

naturally led to comparisons between media that indicate changes over time; for example, 

videos versus animations, slow versus fast animations, static drawings versus animations, 
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and texts versus (or with) animations.  In this chapter, we took a turn that led us to a 

different set of questions.  We created agents that students teach and that animate their 

thinking.  This generated new issues for guiding design and research. In particular, it led 

us to explore the hypothesis that students learn better from animations when the learner 

and animation share ideas and initiative. We believe this hypothesis extends to 

interactions without agents and to human-human interaction as well.  The initial 

empirical results are promising, but of course, there are many studies and design 

possibilities that we have not explored.  Hopefully, our initial work can suggest some 

fertile new directions.  
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