
It’s a Home Run! 1 

Using Mathematical Discourse to Support the Learning of Statistics 2 

 3 

The standards developed by the National Council of Teachers of Mathematics 4 

(2000) state that instructional programs should enable all students to communicate 5 

mathematical ideas.  The standards indicate that good communication includes the ability 6 

to express organized and precise ideas, and the ability to analyze and evaluate the 7 

mathematical thinking of others.  Learning mathematics goes beyond procedural fluency; 8 

it also includes learning to discuss mathematical ideas.  For this purpose, small groups 9 

have become a frequent configuration in the mathematics classroom, and when combined 10 

with a suitable exercise, small group discussions can have positive effects on 11 

mathematical understanding. 12 

Just putting students in groups, however, does not guarantee productive 13 

discussion.  Students may not recognize what they should be talking about and they can 14 

talk about the wrong things; or they may not have a driving question to keep their 15 

discussions lively and moving forward. Exceptional mathematical exercises and 16 

knowledgeable teachers are needed to elicit effective forms of discourse – discourse that 17 

naturally moves towards precision, clarity, generality, and gives students the foundation 18 

to more easily learn future, related concepts. Here, we present an example of an activity 19 

that has worked well for generating productive discussions when teaching statistics. 20 

Discourse that Prepares Students for Learning 21 

 The Algebra 1, Algebra 1.1 (first half of Algebra 1 in one year's time), and 22 

Algebra 1A (honors Algebra 1) students and teachers at our high school were asked to 23 



participate in a university study, Inventing to Prepare for Future Learning, designed by 24 

Schwartz and Martin (2004).  Students invented their own ways to measure variability by 25 

completing specially designed activities.  These “inventing activities” were unique, 26 

because the goal was not for the students to actually discover the canonical solutions for 27 

measuring variability (though that would have been a fine outcome).  Instead, the goal 28 

was for the students to have productive discussions that prepared them to deeply 29 

understand the standard solutions, which were eventually presented by the teachers.  30 

Letting students invent their own solution methods was very helpful to us as teachers; it 31 

relieved us of the difficult task of guiding students to invent correct methods without 32 

undermining their own production and discussion of mathematical ideas.  33 

      34 

 35 

Figure 1.  Pitching Machine Task 36 

To clarify how the inventing tasks promote student discussion and learning, we 37 

use the example of an activity called “Pitching Machines.” (We have included the 38 

Pitching Machine activity in the back as a worksheet.)  Students received the grids shown 39 



in Figure 1.  Each black circle indicates where a pitch landed when aimed at the X in the 40 

center. The students’ task was to find a method to compute a reliability index for each 41 

machine; the method should produce a score that ranks each machine on a reliability 42 

continuum so people can decide which one they would like to buy.  When students asked 43 

what reliability means, the teacher encouraged them to create a definition based upon 44 

characteristics a baseball coach would look for in purchasing a pitching machine.   45 

The grids used an instructional technique called contrasting cases.  Contrasting 46 

cases, like tasting glasses of wine side-by-side, can help people notice aspects of a 47 

situation they might otherwise overlook.  In the context of statistics instruction, the 48 

contrasting cases helped students notice important quantitative properties. For example, 49 

the grids held different quantities of pitches, so students noticed that their solution 50 

method needed to handle different sample sizes.  This prepared them to understand why 51 

variability formulas often divide by n (to take the average of deviations from the mean).  52 

Another example involves the pitching machine with a tight cluster of pitches that are far 53 

away from the target.  When contrasted with the other machines, this case helped students 54 

notice that variability is not the same thing as inaccuracy, which is a common early 55 

confusion for students.   56 

The teachers’ responsibility was to circulate among the groups, clarify the task 57 

and ask questions. Some teachers found it awkward to resist giving answers, but this 58 

wore off quickly when they saw the results of their restraint.  There is, in fact, more than 59 

one way to measure reliability, and this provided students increased latitude in generating 60 

feasible solutions. 61 



 62 

Figure 2. A few sample student solutions. 63 

The students worked in small groups (2 to 5 students) for approximately 45 64 

minutes to invent their reliability index.  Figure 2 shows some of the creative ways they 65 

tried to solve the problem: (A) Found the area covered by the pitches; this is equivalent to 66 

a range formula because only the far points affect the answer,  (B) Found the perimeter 67 

using the grid marks and used the Pythagorean Theorem to compute the length of each 68 

line segment; this is similar to summing the distances between consecutive numbers in a 69 

data list, except it often ignores interior points,  (C) Found the average distances between 70 

pairs of points, although pairings are selected haphazardly; this method uses the average 71 



instead of summing,  (D) Found the average distance from a haphazardly chosen point to 72 

all other points; if they had chosen the distance from the mean of the points instead of an 73 

arbitrary starting point, this would be equivalent to the mean deviation, (E) Found the 74 

frequency of balls in each of the four quadrants; this is a rare frequency-based solution,  75 

(F) Found the average distance between all pair-wise points using a ruler: this is a 76 

general, but tedious solution. 77 

These ninth-grade students had studied measures of central tendency and 78 

graphical representations extensively in middle school, but had little background with 79 

other statistical concepts.  We were amazed by the level of sophistication shown in their 80 

discourse, not necessarily by the words they used, but by the ideas and problems they 81 

considered.  Each group across all the class levels was able to derive some measure of 82 

variability. The solutions themselves were not critical; only one group came up with a 83 

generalizable solution.  Instead, it was the discussion among group members concerning 84 

how to handle aspects of variability that was important. As the students devised a method 85 

for measuring reliability, they noted most of the features highlighted by the contrasting 86 

cases and worked to find methods that could accommodate those features.   87 

The following transcript captures a representative discussion among one group of 88 

students.  The students often pursued their individual ideas, but they also vigorously 89 

commented on each other’s ideas and the overall state of their problem solving process. 90 

The visual nature of the problem also made it easy for the students to point to particular 91 

features and to be sure that they were all looking at the same thing (although this makes it 92 

harder for the reader to follow along in the transcript).  93 



 Early on, the students noticed that the grids held different numbers of data points 94 

(pitches).  They debated the value of a solution method that includes all the pitches versus 95 

a method that uses a range-like formula. 96 

 97 

JUAN: See you start at one point and count to others from it. 98 

MICHAEL: Yeah but the other thing… Do you realize that over here there are only 4 balls that they tested? 99 

JUAN: Sure. 100 

MICHAEL: Over here there are 5.  101 

JUAN: Yeah, but it doesn’t matter. You only have to use the number of balls in the calculation, or some 102 

that follows the… [inaudible] 103 

MICHAEL: So? 104 

JUAN: The problem is, for example, here if you start counting from here you’ll get a very different answer 105 

than if you start counting from here. 106 

MICHAEL: Exactly. 107 

LORENZO: Yeah. 108 

JUAN: So I would find something that includes all of them. Like distance from the target. 109 

LORENZO: Yeah like [inaudible] 110 

JUAN: Shortest distance from the target over longest distance from  target is something I’d consider… 111 

sorry, longest over shortest. 112 

 113 

One of the advantages of groups, when they work well, is that there will be more 114 

ideas to work with compared to doing a task alone.  Although the conversation may seem 115 

fractured, this is a natural feature of the early stages of moving through many different 116 

ideas.  The following exchange provides an example of how students productively moved 117 

among ideas. Lorenzo, who had been relatively quiet, found an opportunity to contribute 118 

by noticing that one pitching grid had a tight cluster of pitches and another grid had an 119 



outlier.  This led to an important discussion where the students worked with one 120 

another’s ideas.  Ultimately, Michael articulated a set of important issues for Lorenzo’s 121 

proposed solution method and for subsequent methods they might have generated. 122 

 123 

LORENZO: Right here [Smythe] they’re all grouped together.   124 

JUAN: Yeah.        125 

LORENZO: But this outlier so we just…     126 

MICHAEL: The closest is 2. 127 

LORENZO I know. 128 

JUAN: The largest is… 129 

LORENZO: I know but you have… 130 

JUAN: The longest over the shortest distance. 131 

LORENZO: Yeah or we could just eliminate… just eliminate that one. 132 

JUAN: That will give you the most reliability… 133 

JUAN: … the problem is… Then you’ll say this [Big Bruiser] is very reliable because the distances 134 

[shortest and longest] are the same.  I was trying… 135 

MICHAEL: Although this one [Ronco] would be very reliable because  all of them are closer to the target.  136 

Like for this one [Smyth], we can always move the target this way, so that you know every single ball…. 137 

         138 

At this point, the teacher arrived at their table and helped the students understand 139 

the task. In particular, the teacher emphasized that their solution method had to yield 140 

values that ranked the machines in accordance with their own intuitions of reliability. 141 

This constraint prevented the students from generating an arbitrary solution method.  142 

Notice that the teacher did not answer the students’ questions about how to do it; the 143 

students had to assume responsibility for their solution.  144 

 145 



TEACHER:   What is your conclusion?  Which one is the most reliable? 146 

MICHAEL: Smyth’s finest. 147 

TEACHER:   Which one is the least? 148 

JUAN: Big Bruiser Pitchomatic. 149 

LORENZO: Yeah. 150 

MICHAEL: Ronco. 151 

JUAN: Big Bruiser Pitchomatic. This one is. This one!? 152 

MICHAEL: That one is less… less reliable and this one is most. 153 

TEACHER:   And what about these two? 154 

JUAN: Oh, you want us to rank them. 155 

MICHAEL: These two are in the middle. 156 

TEACHER:   But your rule should reflect your ranking. 157 

JUAN: Well sure, we have to now come up with a rule that affects our pre-defined bias. 158 

TEACHER:    So, if you say this is the most reliable and your rule only comes up with this... is the highest 159 

number somewhere in the middle then? 160 

JUAN: The problem is now that what we have to do – now that we are mathematically bigoted --- we have 161 

to justify it. 162 

TEACHER:   That’s right. 163 

JUAN: So how should we go about doing this? 164 

TEACHER:   That’s an interesting question. 165 

JUAN: So what you’re going to say now is, “figure it out for yourself.” 166 

TEACHER:   That’s right. You got it. 167 

JUAN: I figured how this class works already.  168 

 169 

 We use block periods (90 minutes) twice a week at our high school; therefore, we 170 

were able to fit group discussion and whole class presentations of the solutions into a 171 

single block. After all groups had devised their methods, each group recreated their 172 



solution for one of the grids on an overhead.  It was important that their solutions be 173 

transparent and precise, because a student volunteer from a different group was selected 174 

to explain the method to the class using only what was written on the overhead.  This 175 

requirement elicited even more valuable discussion among group members about possible 176 

misinterpretations and ways to clarify and simplify the graphics.  During the 177 

presentations, students continued to question one another concerning the rationale and 178 

generality of their methods.  The teacher remained an interested bystander, only helping 179 

to clarify what students said, if necessary.   180 

 During the regular 50-minute period the following day, the teacher gave a second, 181 

but briefer task, to make sure the students could connect what they learned from the 182 

original visual problem to numerical data presentations. In this task, the student groups 183 

received pairs of small data sets, one pair at a time; for example, they first received  184 

{1 3 5 7 9} v. {3 4 5 6 7}. They were told that each number in a set represents how high a 185 

ball bounced when it was dropped on a particular trampoline. Their task was to invent a 186 

way to compute which of the two trampolines was more consistent.  They repeated the 187 

process with the pairs {1 1 1 1 9} v. {1 3 5 7 9} and {1 3 5} v. {1 1 3 3 5 5}.   188 

Then the teacher gave a brief 5-10 minute lecture about the mean deviation, one 189 

solution method that mathematicians invented to solve these kinds of problems.  The 190 

teacher applied it to the trampoline data to show how it worked.  Students were interested 191 

to see how their solution method fared against that of the mathematicians.  Following the 192 

lecture, the students spent 10-15 minutes practicing with a new small data set.  Our hope 193 

was that the students’ use of discourse and their experiences with the Pitching Machine 194 



and trampoline activity better prepared them to understand variability and to learn how 195 

the mean deviation formula does such a good job of handling it.  196 

Evidence that Students Learned 197 

 A week after learning about variability and standardized scores (e.g., grading on a 198 

curve), the students took a written test.  One question asked the students to compute a 199 

measure of variability.  Eighty-six percent accurately computed the mean deviation.  A 200 

year later we retested a random subset of 30 students; fifty-seven percent remembered 201 

how to compute the mean deviation, even though they had only practiced for 10 minutes 202 

the year before with no intervening practice.  We compared these students with a random 203 

sample of college students from a top-20 public university (according to US News and 204 

World Report) who had taken a semester of college statistics within the past two years.  205 

None of the college students remembered how to compute a measure of variance.   206 

 We also included an item in the posttest to see if the students understood the 207 

rationale behind the structure of the mean deviation formula, which we thought the 208 

invention process had prepared them to learn from the brief lecture. We asked them why 209 

the formula 
x − X∑
n

 divides by n.  Sixty-four percent of students indicated that it 210 

addressed the problem of different sample sizes. For comparison, we also asked them 211 

why the slope formula, which they had learned a few weeks earlier without a discourse-212 

driven curriculum, subtracts x1 from x2 in 
  
m=

y2 − y1

x2 − x1
.  For this problem, only 32% of 213 

the students could explain why, although they could use the formula.  Discourse-based 214 

activities, when done well, can increase students’ conceptual understanding of statistics 215 

and formulas.  216 



Key Components for Eliciting Meaningful Mathematical Discourse  217 

 In our experience, the key components behind this successful classroom 218 

experience included an engaging activity that helped students focus on the important 219 

things they should discuss, groups of two or more students, and a teacher comfortable 220 

with and proficient at facilitating classroom discourse. We discuss each component in 221 

turn so teachers may be able to find or design their own lessons.   222 

The activity must be approachable for the students.  The students should be able 223 

to try out things quickly, and easily revise their initial efforts as they begin to notice more 224 

aspects of the problem.  For example, the visual format of the pitching machine problem, 225 

plus its comprehensible context and contrasting cases, allowed the students to start 226 

sketching answers quickly, before they started to compute specific answers. Problems 227 

with several solution paths are also desirable because they make it possible for many 228 

students in the group to bring different legitimate ideas to the table and keep the 229 

conversation going.  Problem solving books abound; the major task for the teacher is to 230 

identify relevant, enriching problems that can lead to good discussion and a better 231 

understanding of the curriculum.  We hope our example will help other teachers identify 232 

likely candidates. (Additional examples of statistics activities may be found in the 233 

appendix of Schwartz and Martin, 2004 at http://AAALab.Stanford.Edu.) 234 

Students working in groups have the opportunity to engage in exciting, sometimes 235 

heated discussions about mathematics.  Ultimately, the goal is for individual students to 236 

adopt the group habits of questioning, checking, and explaining, which are critical for 237 

meaningful learning and mathematical communication.  Alan Schoenfeld (1995) noted in 238 

his studies of mathematical problem solving that students working alone tended to 239 



quickly search for familiar, formal mathematics they could apply to novel problems, with 240 

little regard to the accuracy and feasibility of their response. In the pitching machine task, 241 

we tried to solve this problem by having students work in groups on a novel inventing 242 

task where, instead of causing a rushed solution, their shared ignorance of how to begin 243 

freed them to analyze all aspects of the problem.   244 

In addition to the valuable collaboration among students, an added bonus of 245 

student discourse is that it reveals student thinking for the teacher, who can take note of 246 

misconceptions or ideas to be discussed later.   The teacher must be willing to let the 247 

groups hash out their ideas by not jumping in immediately to point out either erroneous 248 

or correct solutions.  A simple question about their process or how it applies to a 249 

different data set can help students move forward.  At the same time, teachers need to be 250 

able to adapt quickly to unorthodox or creative solutions they might encounter as they 251 

circulate among the groups.  For example, with the pitching machine task, many students 252 

used an area solution (Figure 2A).  Several teachers who saw this solution asked whether 253 

the area solution would work if all the dots were in a straight line.  By generating the new 254 

case on the fly, the teachers kept the student discussion alive. At the same time, the 255 

teachers modeled an important aspect of mathematical thinking; namely, generating cases 256 

that test the generality of a solution method.  In sum, for these types of activities, the 257 

teacher assumes the role of manager who must decide whether to let the ball players just 258 

keep playing, interrupt to give the pitcher advice or support, or even set up a play that the 259 

players can try out.   260 



Trade-offs 261 

  Having students engage in invention activities and making group presentations 262 

does require extra class time compared to more traditional tell-and-practice lessons, and 263 

they may not elicit correct responses during the invention session.  An additional class 264 

period may be required to present the correct solution.  Most math teachers allow one day 265 

per topic or section in the book, plus a review day before the test.  The invention process 266 

would add a day of instruction.  However, our experience shows that students who have a 267 

chance to discuss their own inventions are more prepared to learn and retain subsequent, 268 

related material, which can potentially save time in the future. Schwartz and Martin 269 

(2004), for example, also conducted a formal study that compared a more traditional tell-270 

and-practice style of instruction with the discourse over inventing instruction.  They 271 

found that the two styles of instruction looked the same when the students were tested 272 

directly on the computational aspects of the lessons. The big difference showed up later. 273 

The students in the discourse condition learned over twice as much from later, related 274 

lessons.  275 

 We would recommend the use of invention periodically as good topics and 276 

problems present themselves, especially at the beginning of a unit or main idea in 277 

mathematics.  If the ball is hit correctly, it will go out of the park. 278 

 279 

 280 

281 
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 291 
Batter Up! 292 

 293 
Here are four grids showing the results from four different pitching machines. The 294 
X represents the target and the black dots represent where different pitches 295 
landed.  Your task is to invent a procedure for computing a reliability index for 296 
each of the pitching machines.  There is no single way to do this, but you have to 297 
use the same procedure for each machine, so it is a fair comparison between the 298 
machines.  Write your procedure and the index value you compute for each 299 
pitching machine using the grids below. 300 

 301 
 302 


