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A design experiment is a form of interventionist research that creates and

evaluates novel conditions for learning.   The desired outcomes include new possibilities

for educational practice and new insights on the process of learning.   Design experiments

differ from most educational research, because they do not study what exists; they study

what could be.

Methods for determining “what could be” are underdeveloped.  A science of

novel intervention needs both practical methods for doing productive research and logical

methods for evaluating research.  Some authors propose that intervention research should

adopt product design methodologies that include iterative cycles of mid-stream

modification, retrospective sense making, case studies, and human sensibilities (e.g.,

Collins et al., 2004).  These methods are good for making products, but they are not ideal

for producing generalizable causal knowledge.  Others propose that intervention research

should resemble classic experiments that emphasize random assignment, dispassionate

analysis, and hypothesis testing (e.g., Shavelson, Phillips, Towne, & Feuer, 2003).  These

approaches are good for creating generalizable knowledge, but they are not practical for

early stages of innovation.

These methodological camps are often set apart as opposites, and at best, some

researchers imagine that they can bridge the gap by jumping from observational design

methodologies to large-scale clinical trials.  As we discuss below, this jump is rarely

optimal.  We find it more productive to re-characterize the methods in a larger learning

space that arose from an analysis of the ways people generalize learning to new contexts

(Schwartz, Bransford, & Sears, 2005).  The learning space has two axes (Figure 1a).  The
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horizontal axis represents processes and outcomes associated with efficiency.  The

vertical axis represents innovation.  Below, we say much more about these dimensions of

learning.  For now, Figure 1b shows the learning space adapted to science.

 Figure 1.  Trajectories of knowledge growth.   (Schwartz, Bransford, & Sears, 2005).

Design methodologies are high on the innovation dimension, but low on

efficiency: their goal is often discovery and the creation of novel practices, but they are

poor at developing efficient tests and descriptions of causal hypotheses about learning.

Clinical trials are high on the efficiency dimension, but low on innovation: they test

hypotheses about which intervention causes superior learning, but they require sample

sizes that are too costly for vetting every innovative idea.  Good science needs a balance

of innovation and efficiency.  In the upper-right corner, we position the ultimate goal of

science – the cumulative growth of knowledge – which requires innovation and

efficiency.

Given the space of innovation and efficiency, the question is not which
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methodology is right.  The question is how to promote movement through the space.  The

arrow in the figure reflects our proposal that an optimal trajectory first accelerates along

the innovation dimension and then turns towards efficiency.  Science would hardly

advance if people merely tested and refined pre-existing hypotheses.  However,

innovation-oriented research needs to include provisions for a turn to efficiency, lest the

field get mired in isolated innovations without prospect of accumulation.

The methods we use in our research attempt to facilitate this movement through

the design of research instruments.  Though we design technologies, classroom

structures, lesson plans and the like, we think of these primarily in terms of

instrumentation.  Most of our lab discussions involve creating, evaluating, and calibrating

instruments.  We are not alone – instrumentation is central to all science.  We asked a

physicist how much of his research involves conducting experiments.  He responded that

95% of his time is spent on instrumentation (Jose Mestre, 2004, personal

communication), by which he meant both the design and calibration of apparatus to

precipitate effects and the methods to measure those effects.  In our experience, the

ability that differentiates novices from domain experts in science is the ability to

determine the right instruments for the task.

Designing instruments provides a bridge between innovative design and efficient

experimentation.  In our work, we expend great effort testing the innovative value of our

instruments through assessment experiments.  In the primary example below, we argue

that current instruments to promote and measure learning often miss people’s preparation

for future learning (Bransford & Schwartz, 1999).  To make this argument, we innovated

both the apparatus that prepared students to learn and the measures that evaluated this
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preparation.  This work did not involve isolating or proving causality.  Rather, we wanted

to show that our instruments reveal something that others do not.  At the same time, these

instruments, which generated and measured a phenomenon, equip us for subsequent

efficiency research that can address issues of causality and generality.

We divide the chapter into four sections.  In the first section, we develop the case

for considering learning and science in terms of innovation and efficiency.  In the second

section, we argue that instrumentation can encourage both innovation and efficiency in

learning and science.  In the third section, we show how instrumentation research can

support both student learning and science through a trajectory of innovation that turns

towards efficiency.  In the final section, we turn to the problem of knowledge warrants in

design experiments.  Efficient science has a number of formal techniques for warranting

claims of knowledge progress (e.g., p-values, control conditions).  Can design

experiments be evaluated by warrants of progress in innovation before these innovations

are mature enough to stand the tests of efficient science? We distinguish innovations in

knowledge from innovations in practice, and our solution highlights the belief that

criteria of efficient science depend on predicting future regularities, whereas criteria of

innovation depend on reconciling past irregularities.

THE CASE FOR THE EFFICIENCY AND INNOVATION SPACE

Learning

Figure 1a shows the hypothesized learning space.  When people are high on the

efficiency dimension, they can rapidly retrieve and accurately apply appropriate

knowledge and skills to complete a routine task or solve a familiar problem.  Typically,

learning scientists use measures of speed, accuracy, and consistency to capture efficiency.

Everyday examples of efficiency include people who have a lot of experience with
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certain types of tasks and problems; for example, doctors who have frequently performed

a specific surgery or skilled typists.  Efficiency is important in all domains.  As a field,

we have learned much about how to accelerate development along the efficiency axis

through properly organized and situated practice (Bransford, Brown, & Cocking, 1999).

While efficiency works well when people operate in constant environments, there

are perils to efficiency.  Experimental studies show that efficiency can produce

“functionally fixed” behaviors where people perseverate on previously efficient schemas

instead of letting go to see new alternatives (Luchins, 1942).  For example, nine-year-old

children trying to learn about fractions often count pieces by using efficient, whole

number counting schemas, which interferes with their abilities to interpret the pieces as

parts of wholes (Martin & Schwartz, in press).  Hatano and Inagaki (1986) discuss

“routine experts” who become increasingly efficient at solving familiar problems, but

who do not engage new problems and situations.

Innovation involves creating new skills and concepts, often as a way to adapt to

new situations.  As a field, we know less about innovation.  Relevant psychological

variables, like creativity, are often considered general traits or skills.  Efforts to cultivate

creativity typically involve brainstorming techniques.  “Content-lite” approaches like

these are not ideal, because meaningful innovation requires integration with an extensive

body of efficient knowledge.  Ericsson, Krampe, and Tesch-Römer (1993), for example,

found that original intellectual contributions to a field occur after people spend ten years

developing the requisite domain expertise.

Ideally, the goal of education is to position people in the upper-right corner of

Figure 1a.  People often think of innovation and efficiency as incompatible (e.g.,
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discovery learning versus “back to basics”).  However, the possibility of balancing

efficiency and innovation is highlighted by Hatano and Inagaki’s (1986) notion of

adaptive experts who have a wealth of efficient knowledge but are also able to adapt to

situations that require innovation.  Efficiency in some processes (decoding written words)

frees attention for other things (reading for meaning).  If people have solved aspects of a

complex problem before, this helps make sub-problems routine, freeing them to

concentrate on other aspects of the situation that may require innovation.  At the same

time, it is important to resist practiced responses to situations that do not call for them.  A

major challenge for the learning sciences is to understand how to balance efficiency and

innovation in learning.  

Design research can contribute by developing interventions that strike the right

balance of innovation and efficiency experiences and that place students on a trajectory

towards adaptive expertise.  This research should also create ways to determine whether

students are on that trajectory, and this requires more than borrowing standard off-the-

shelf measures of efficiency.  Efficiency measures can misdiagnose the value of an

innovative experience.  For example, Schwartz and Bransford (1998) asked college

students to innovate representations of data from classic studies of memory.  Other

students wrote a summary of a parallel chapter.  On a subsequent true-false test – a

standard test of efficient factual recall – the summarize students did better than the

innovate students.  However, a new type of measure revealed the value of the innovative

experiences.  Students from both conditions heard a common lecture that reviewed the

studies and their implications for human behavior.  A week later, the students had to

predict the results of a new, but relevant, experiment.  The innovation students produced
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twice as many correct predictions with no increase in wrong predictions – they had been

prepared to learn from the lecture and adapt what they learned to predict the results of the

new experiment.  The benefit of the innovative experiences was missed by the standard

efficiency-oriented assessment, but it was captured by a measure that looked at students’

subsequent abilities to learn.  As a field, it is important to develop ways to measure the

benefits of innovative experiences, lest these experiences look useless on standard tests of

efficiency.

Science

We can export the learning space to scientific inquiry without too much damage.

Efficiency research nails down the regularities identified by prior work.  It involves

applying, refining, or testing prior beliefs.  One example would be the human genome

project; the techniques of gene sequencing were already established and finishing was a

matter of time.  Another example occurs when well-delineated hypotheses create testable

predictions, and at their finest, can create a “Galilean experiment” that adjudicates

between two theories (Medawar, 1979).

As with learning, there are scientific perils to an efficiency-only approach.

Recent political developments in educational research push for large clinical studies to

determine which models of instruction are the most effective.  As the Design-Based

Research Collective (2003) noted, “the use of randomized trials may hinder innovation

studies by prematurely judging the efficacy of an intervention” (p. 6).  The political push

for clinical trials may promote the use of efficient experimental methods to make choices

between sub-optimal alternatives.  Moreover, good research designs may be

compromised by inappropriate measures, such as evaluating students’ efficiency in



 Last saved by dls  11:51 AM      4/1/2005      9

school tasks rather than their potential for future learning and decision making beyond

school.

 Innovations in science take many forms.  One form involves explanation; for

example, why children find division harder than multiplication.  Another form involves

the discovery of a new phenomenon like X-rays.  In contrast to efficiency research,

innovative science does not necessarily depend on generalization or causal identification.

A single case is often sufficient to challenge a long standing theory.  The invention of the

telescope led to the discovery of lunar imperfections, which undermined the prevailing

theory of heavenly perfection (Kuhn, 1957).

There are also perils to innovation-only research.  In the context of design

experiments, Brown (1992) writes, “It is not sufficient to argue that a reasonable endpoint

is an existence proof, although this is indeed an important first step” (p. 171).  One peril

is that because the work is about innovation, it often needs to let go of current theories.

This can create a tower of innovation babble with little short-term hope of cumulative

knowledge.  A second peril is that if innovations must stand on their own, with limited

support from prior theory, the research is difficult and runs a high risk of failure.  diSessa

and Cobb (2004), for example, argue that a preeminent goal of design experiments is to

create new theories.  This may be a fine goal for brilliant researchers at the top of their

game, but for the rest of us, it is a recipe for heart-felt platitudes.

Innovation-only and efficiency-only approaches are not sufficient for the types of

progress needed to improve education.  The ultimate goal of research is to contribute to a

growing body of knowledge that comprises tested “truths” but adapts to new findings and

historical times.  The challenge for design experiments is to find a way to balance the
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goal of innovation with the need for subsequent efficiency.  We propose that a focus on

instrumentation can help achieve this balance.

INSTRUMENTATION FOR PROMOTING INNOVATION AND EFFICIENCY

 If it were possible to quantify contributions to the advancement of science,

instrumentation would compete well.  New instruments open territories that scientists

quickly populate.  One only needs to look at the effects of fMRI on psychology.

Interestingly, instrumental innovations are often independent of research methodology.

Videotaping, for example, can be used in clinical, experimental, and cultural applications.

Sometimes we wonder if debates over research methods are missing the action.  The most

highly cited authors, at least in psychology, are those who make new instruments for

research.  Here, we describe examples of how instrumentation research supports

innovation and the subsequent turn to efficiency.  We begin with science, and then

develop the parallel for individual learning.

Science

Innovation in Instrumentation

New instruments often foster scientific innovation by enabling scientists to see

what they could not see before; cell stains, telescopes, and the habituation paradigm are

just three examples.  They exemplify the first half of the instrument equation – the

“apparatus” that makes phenomena observable.  Passive apparatus (cameras) and

emissive apparatus (radar) are staples of the natural sciences.  In the behavioral sciences,

researchers often use perturbing apparatus that trigger processes to make their features

more visible.  For example, psychologists can use an “apparatus” of word stimuli to

trigger people’s thoughts and see how they affect memory.

Design experiments, because they are interventions, can also be recast as a
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“perturbing” apparatus.  Cobb et al., (2003) state, “Prototypically, design experiments

entail both ‘engineering’ particular forms of learning and systematically studying those

forms of learning…” (p. 9).  When design researchers devise novel lessons, technologies,

or social practices, they are designing a new apparatus for perturbing the environment to

reveal processes of learning.  Ideally, the apparatus can also be reused, if the resulting

learning processes are desirable.

The second half of the instrument equation is the development of measurement.

Measurement converts observations into precise communicable information.  Though

measurement reduces the totality of a phenomenon, the gains in precision can aid

innovation.  Precise measures can pick up aberrations from the expected.  Astronomers in

the early 1800’s found that the measured positions of Uranus did not match its predicted

orbit.  This anomaly led to the hypothesis and eventual discovery of an eighth planet,

Neptune.  Galileo had seen Neptune through his telescope, but he observed it as a star.

The precision of measurement, and not pure observation, led to discovery.

Taking the Turn toward Efficiency

Instruments that were once innovative may subsequently support efficient

progress in science.  Piaget created instruments to evaluate children’s cognitive function.

The instruments themselves could be disseminated and evaluated independently of Piaget

(e.g., cross-cultural applications).  This allowed the research community to take a turn

from an innovative but singular set of studies to a more efficient mode of research that

refined the instruments and addressed what causes change in the measurements (and

whether Piaget’s theory was correct).

The measurement component of instrumentation permits others to determine if
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they are “seeing” the same thing.  Measurements can be quantitative, for example, the

time to complete a task.  Measurements can also be qualitative, for example, a set of

observational criteria for the presence of a phenomenon.  If researchers want, they can

convert qualitative measurements into a quantitative form by recording the frequency or

intensity of an observation.  The advantage of quantification is that it permits researchers

to use the substantial structural apparatus provided by mathematics to draw inferences.

However, quantification is not a prerequisite of measurement, and oftentimes it is a

mistake to force a set of observations into a particular mathematical model (e.g., a linear

model).

A challenge for innovation research is that “the decision to employ a particular

piece of apparatus and to use it in a particular way carries an assumption that only certain

sorts of circumstances will arise” (p. 59; Kuhn, 1970).  Some researchers reject the idea

of using measures because they worry the measures will foreclose the possibility of

detecting the unanticipated.  Consequently, many rely on narratives rather than discrete

measures to create inter-subjectivity.  An extreme position, like that of Eisner (2001),

argues that a research report should help the reader experience what the researchers saw,

including their epiphanies and failures.  Unlike some traditionalists (Shavelson et al.,

2003), we do not have a strong opinion about narrative.  We do not know of any evidence

one way or another that determines whether narrative yields precise agreement between

the researcher and the audience.

Personally, we report discrete process and outcome measures in scientific papers.

This does not mean that we are not highly attentive to occurrences that elude our

measures.  (We are present throughout our studies, we videotape, and we collect
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artifacts.) It is naïve to assume that researchers who use measures are not also keen on

discovering processes and outcomes they never imagined.  For example, when we design

a new paper-and-pencil assessment, we exhaustively code every response looking for

interesting patterns.  In the studies below, each instrument averaged seven different

categories of response.  We would love to report all the responses and patterns that we

find.  However, like all scientific authors, we decide which of the patterns will be most

compelling and economical to report – this is often a simple percent correct, but not

always.

Implications for Design Experiments

A place for substantial improvement in design research involves the use of

measurement.  Design research is quite good at developing techniques for the apparatus

half of the equation – innovative instruments that precipitate effects.  However, most

design research has not finished the equation by developing innovative measures suited to

those effects.  This lack of measure is surprising.  Unlike ethnographers, design

researchers are orchestrating “what could be” rather than observing what already exists,

and therefore, they have must have some goal in mind.  Ideally, this goal would be

specific enough that it is possible to begin precisely measuring its attainment.

One hope of design research seems to be that the instructional apparatus will jump

from the quadrant of high-innovation and low-efficiency in Figure 1b to the quadrant of

cumulative knowledge, perhaps through large-scale clinical trials involving random

assignment and standard achievement measures.  Most standardized tests of achievement

and intelligence, however, are created to rank people and not precisely reveal the

component knowledge and processes responsible for an answer.  Without working on
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measures that are tightly matched to the perturbing intervention, the research will yield

claims like, “Our intervention was significantly better than standard practice.” Though

good at satisfying evidence-based educational policy, we fear the vagueness of the

measure will not contribute to the cumulative growth of scientific knowledge.  For

example, when the social climate changes what it means to “do better,” these studies will

become irrelevant instead of leaving documentation of exactly what learning a particular

design yields or how to improve it.  Creating measures that are tightly coupled to an

apparatus of change can better facilitate a productive turn to efficiency.

Learning

To us, it is clear that instrumentation can support innovation and the turn to

efficiency in science.  The idea that working on instrumentation can also propel

individual learning is less obvious.  Measurement, in particular, often conjures images of

students mechanically using rulers.  This is an efficiency-only take on measurement that

presupposes the techniques and outcome categories already exist in the mind of the

learner.  The innovation side of measurement is not so banal, though it has been

overlooked in the research literature.  The standard cognitive study of scientific reasoning

emphasizes methodological thinking over measures.  People receive a set of well-defined

input and output variables (the instruments), and their task is to design unconfounded

experiments to discover the relations (Chen & Klahr, 1999; Kuhn, Schauble, & Garcia-

Mila, 1992).  Our experience with hundreds of adults is that it is not the ability to reason

within an experimental design that is the difficult part of scientific thinking.  Novices

quickly learn about confounds, though they sometimes forget to use this knowledge

efficiently or find it tedious.  The more difficult challenge is developing measures suited
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to a specific domain.  By the same token, asking novices to attempt to innovate

measurements can be an excellent source of domain learning.  Creating measurements

encourages specificity in understanding.  For example, asking students to measure how

well people learn from a reading passage can help them develop more differentiated

knowledge of what it means to learn, such as whether it is more appropriate to measure

free recall, recognition, comprehension, inference, or transfer.

Another benefit is that measurement can indicate places that require innovation.

As a rather grand example, we consider Plato’s learning paradox.  This paradox raises

doubts about whether people can innovate new knowledge, and accepting the paradox

leads to an efficiency view of learning that emphasizes the refinement of prior knowledge

(e.g., innate concepts, language modules, phenomenological primitives, and so forth).

Through the dialog of the Meno, Plato (1961) formulates two components of the paradox:

But how will you look for something when you don’t in the least know what it is?

How on earth are you going to set up something you don’t know as the object of

your search? To put it another way, even if you come right up against it, how will

you know that what you have found is the thing you didn’t know? (80.d).

The first half of the paradox asks how people can look for knowledge if they do

not already know what they are looking for.  Plato’s solution is that incommensurables

alert people to the need for innovation.  The term incommensurable refers to the situation

where multiple elements cannot be measured within the same rational system.  For

example, if we try to determine whether an Olympic weight lifter broke the world record

by more than a long jumper did, we cannot use weight to measure distance or distance to

measure weight – the performances are incommensurable.  Thus, a failure in the
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measurement system lets one know where to look for new knowledge.  It causes the

disequilibrium that begins the search for resolution.

The second half of the paradox asks how can people recognize whether they have

found knowledge if they do not already know it.  The solution is that people know they

have found new knowledge when the incommensurables can be explained within the

same system.  In the case of weight lifting and long jump performances, one makes them

commensurable by using standardized scores.  People know they have learned something

new, because it is possible to relate what they could not previously. We return to the

example of standardized scores below, but for our present purposes, it is noteworthy that

Plato resolves the learning paradox by offering measurement as a premiere example of an

innovation in learning.

Figure 2.  Students innovate a reliability index to measure pitching machines.  (Schwartz

& Martin, 2004).
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In our work teaching children statistics, we capitalize on the potential of

measurement for propelling learning.  An example from the materials we use to teach

variability can help demonstrate the point.  Each grid in Figure 2 shows the result of a test

using a different baseball-pitching machine.  The black circles represent where a pitch

landed; the X is the target.  Students receive the innovation task of developing a formula

or procedure that computes a reliability index for each machine to help shoppers.

The pitching grids were designed to help students develop more differentiated and

structured knowledge.  By highlighting key quantitative distinctions, the contrasting grids

alert learners to the properties their measurements need to reconcile.  For example, most

students initially misinterpret variability as a lack of accuracy.  The pitching grids

specifically include an example where all the pitches are extremely close together, yet

they are far from the target.  This helps the students notice that variability and lack of

accuracy should be differentiated.

By asking students to innovate a single measure by which to compare the

machines (the reliability index), this task also promotes a more structured understanding

of variability, because the students’ formula must accommodate the various dimensions

along which the grids differ.  For example, the grids use different sample sizes.  Many

students begin by summing the distances of the pitches from the target, but they quickly

realize that grids with more pitches will tend to get higher variability scores, even if the

pitches are close to the target.  A simple summation measure makes samples of different

size incommensurable.  The need to handle sample size becomes a structural element of

students’ understanding of variability.

We do not expect students to innovate the conventional measurement.  Instead,
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our assumption is that the innovation activities prepare the students to understand

efficient expert solutions more deeply.  For example, when they hear the standard

solution for finding variability, they will appreciate how dividing by ‘n’ elegantly solves

the problem of comparing samples of different sizes (by taking the average of the

deviations from the mean).  As fits the learning space, we have students accelerate on the

innovation dimension first, before they take the turn to efficiency.  An emphasis on

instrumentation, in this case measurement, can facilitate this trajectory.  An alternative

would be to just tell the students how to compute variance at the outset.  We believe this

yields efficiency, but it does not create a trajectory towards adaptive expertise.  The

following section tests this belief.

A DOUBLE DEMONSTRATION OF THE INNOVATION-EFFICIENCY SPACE

Figure 3 summarizes our claims so far.  We believe that both scientific progress

and individual learning benefit from accelerating first on the innovation dimension before

taking a turn to efficiency, and we propose that this trajectory is particularly well-

supported by an effort to develop instrumentation.  To make our claims more concrete we

provide an example of this double-trajectory in a study we did with 9th-graders.  Notably,

none of the research we describe is about proving causes.  Instead, it is about

demonstrating the discriminant and ecological validity of our instructional apparatus and

measures, which we believe is one place where design research can excel in contributing

to scientific knowledge.
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Figure 3.  Taking the turn in learning and science.

Demonstration 1: High on Innovation, Low on Efficiency

This research involved six classes of 9th-grade algebra students.  It was the

students’ first introduction to the notion of innovating measures and the topic of

variability.  It was our first effort at building a new apparatus to help students innovate on

the topic of variability and at building new measures to detect the effects.  The pitching-

grids of Figure 2 provide an example of one instructional apparatus.  We provide an

example of an innovative measure below.  A complete description of the full set of

instruments and results may be found in Schwartz and Martin (2004).

Students spent a few hours innovating their own ways to measure variability in a

variety of tasks.  Students worked in groups, and there were class discussions about the

invented solutions.  Students never invented a canonical solution, and the teacher did not

present one during the innovation phase.  However, at the end of the innovation activities,
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the teacher gave a 5-min lecture on the mean deviation (an efficient way to measure

variability) and students practiced for another 10 minutes.  The question was whether

students’ innovation activities would prepare them to learn the efficient solution from the

brief lecture and practice, and whether we could measure any special benefits of the

innovation activity.

All six classes received the same instruction.  Putting classes into control

conditions was premature.  Still there were ways to make scientific progress.  We

included techniques, such as benchmarking our instruments, to support plausible

inferences on whether we (and the students) were on a good trajectory.  By plausible

inference, we mean the evidence confirms our expectations. This is a much weaker

warrant than the standard of falsification in efficient science, and these kinds of designs

cannot guarantee that there were not other sources of influence. However, in early stages

of research they can be a valuable source of preliminary evidence. We have conducted

many design experiments where the results did not support plausible inference, leaving us

to decide whether there was a problem with our instruments or whether our guiding ideas

were wrong.  Deciding whether to try again is a problem faced by all researchers.

Instrumentation cannot guarantee successful innovation – nothing can.  Therefore, we

usually “bet low” by conducting small studies, and then pursue the most promising

results.

The most important of our techniques for plausible inference is “targeted

measurement.” We try to tune our measures to specific features of our intervention.  For

example, as part of our assessment, we used a number of off-the-shelf techniques for

measuring efficiency, such as asking students to compute variability and to solve word
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problems.  Students improved from 5% at pretest to 86% at posttest.  A year later without

any intervening review, they were still at 57%.  This measure indicated the students had

learned the efficient solution, which is very important, but we thought it missed the

unique benefits of the innovation activities.  We needed to invent new measures that

targeted the novel benefits of our instruction.

Table 1.  Percentage of students who successfully explained why a formula uses a given operation.

         9th-Graders                   College Students

 Time of Test                  Semesters of Statistics

   Pretest  Posttest None  One
        _

Why does Â| X-x | / n divide by n?       6%  63%     0%     12%

Why does m = y2-y1/x2-x1 subtract x1?    10%  14%    11%   29%

We included a large number of targeted measures specifically addressing our

expectation that innovating measures would help students subsequently understand why

an efficient measurement procedure does what it does.  One example comes from our

expectation that students who worked with the pitching grids would realize that their

measurements needed to handle the different sample sizes in different grids.  We thought

this would prepare them to appreciate how canonical variability formulas accomplish this

task.  To test this idea, we developed a “symbolic insight” measurement.  Students

receive a formula and have to explain one of its symbolic operations; for example, “Why

does this variability formula divide by ‘n’?”  As a comparison, we also created symbolic

insight questions about another formula they had learned recently but not through our

innovation-to-efficiency curriculum.  We exhaustively coded the different types of
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answers and found a number of interesting patterns (see Schwartz and Martin, 2004).

Table 1 simplifies the data by using an aggregated measure of symbolic insight.  The

students did better with the variability formula than other formulas they had been taught

in other ways, and they showed greater gains than a benchmark of college students who

had taken a full semester of college statistics.  This leaves us with the plausible inference

that our intervention helped students develop symbolic insight, and that this insight is not

a common outcome of other forms of instruction.

Without a control group, we cannot go beyond the plausible inference that the

innovation component of the lessons prepared students to learn the variability formula so

well from the brief lecture and develop symbolic insight.  Being early on the innovation

curve, the time was not right for efficient tests of causal hypotheses.  However, the study

equipped us with the instrumentation to find out.

Demonstration 2: Taking the Turn

The second demonstration involves the same students after two weeks of

innovating statistical measures and subsequently hearing efficient solutions.  The students

were further along the curve in their statistical knowledge, and they were able to show a

turn towards adaptive expertise.  The demonstration also shows how our research was

able to take the turn to efficiency through the use of an assessment experiment.  To better

explicate the design and purpose of the experiment, we provide some background.

The experiment arose from a concern that most current assessments of knowledge

use sequestered problem solving (Bransford & Schwartz, 1999).  Like members of a jury,

students are shielded from contaminating sources of information that might help them

learn during the test.  It appears that this assessment paradigm has created a self-
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reinforcing loop where educators use efficiency-driven methods of procedural and

mnemonic instruction that improve student efficiency on sequestered tests.  However, we

suppose that a goal of secondary instruction is to put students on a trajectory towards

adaptive expertise so they can continue to learn and make decisions on their own.   Like

many others, we fear that measures of the wrong outcomes drive instruction the wrong

way.  In prior work, we had shown that preparation for future learning (PFL)

assessments, which directly examine students’ abilities to learn, are a viable alternative to

sequestered assessments, and they better reveal the strengths and limitations of different

forms of instruction in college-level psychology (Schwartz & Bransford, 1998).

However, one series of studies with one demographic profile and in one content area is

insufficient.  Moreover, in those studies, students were directly told what they were

supposed to learn.  Ideally, good instruction can help students learn in the future without

explicit directives.  Thus, with the current assessment experiment, we wanted to continue

work on PFL measurements using a new age group, a new topic, and a new format that

determined whether students spontaneously took advantage of a potential learning

resource.

The assessment experiment crossed the apparatus of instruction with the method

of measurement.  We first describe the two instructional conditions for learning about

normalizing data shown at the top of Figure 4.  Students received raw data that required

them to compare individuals from different distributions to see who did better.  For

example, the students had to decide if Bill broke the high-jump world record more than

Joe broke the weight-lifting record given data of the top jumps and lifts that year.  Three

randomly selected classes were assigned to the invention condition.  These students had
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to innovate their own way to solve this problem.  There were neither class presentations

nor feedback, isolating the value of innovation from other features in the larger design

experiment.  The other three classes received the tell-and-copy treatment.  These students

were taught an efficient visual procedure, which they copied using the data sets.

Figure 4.  Design of assessment experiment and results.  (Schwartz & Martin, 2004).

The second factor involved the method of measurement and whether students

received an embedded learning resource in their posttest several days later.  In Figure 4,

this is shown by whether arrows go through the middle box.  The resource was a worked

example that showed how to compute standardized scores (see Appendix).  The example

showed how Cheryl determined if she was better at the high dive or low dive.  The

students had to follow the example to determine if Jack was better at high jump or

javelin.  Half of the students from each condition received this worked example as part of

their posttest and nearly everyone followed it correctly.  The question was whether

students followed their usual efficiency-oriented practice of treating the example as a
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“plug and chug” problem, or whether they adapted to learn what the problem had to offer.

To detect spontaneous learning, there was a target transfer problem later in everybody’s

posttest (see Appendix).  It involved a different context and format, and its solution

depended on using standardized scores as in the worked example.  The worked example

and the target transfer problem created a novel double transfer assessment of preparation

for future learning; students needed to transfer in to learn from the worked example and

they needed to transfer out from the worked example to solve the target transfer problem.

Figure 4 shows the percent of students who solved the target transfer problem.

Students who had innovated their own methods for normalizing data learned the efficient

solution from the embedded worked example and spontaneously transferred this learning

to solve a novel problem, more so than students who had been told and had practiced a

specific visual technique for normalizing data.  This difference shows the effectiveness of

innovation activities in helping students take the turn towards adaptive expertise.

Students in the innovation condition who did not receive an embedded resource were

probably still better prepared to take the turn than the tell-and-copy students, but they had

no opportunity to demonstrate that readiness and looked the same.  Thus, the PFL

measure demonstrated discriminant validity, because it detected a difference that was

missed when there was no embedded learning resource.  This example also shows how

PFL assessments can be sensitive measures of levels of understanding that we care about

but that can be missed by sequestered measures of efficient problem solving.

 There are two points to make with this example.  One point is that student

learning can advance on a curve that first accelerates along innovation and then turns to

efficiency.  The value of innovation activities for student learning seems obvious in
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retrospect, but there is a great deal of confusion in this area (see Schwartz & Martin,

2004).  We hope these studies are a useful demonstration of the hidden value of

innovation for subsequent efficiency.

The second point is that instrumentation can help innovative research take the turn

to efficiency.  For example, in the study above, we taught the classes ourselves.  We then

gave our instruments to classroom teachers who implemented the study the following

year with seven new classes.  Results indicated a very high degree of replication.

Good instrumentation research does not have to depend on causal claims, and

good instrumentation does not have to inhibit the innovative spirit of design experiments.

Nowhere in this work did we isolate specific causal ingredients, and we were able to

leverage our instrumentation with little cost to the design experiment itself.  This

instrumentation focus permitted us to make cumulative and replicable progress without

cutting the research into expensive experimental designs that are efficient in terms of

causal proof but inefficient in terms of resources.

WARRANTS OF INNOVATION

If anything unifies the literature on design experiments, it appears to be the goal

of useful innovation.  Until now we have skirted a fundamental question – what is an

innovation? How can a researcher or funding agency decide if there is productive

movement on the innovation dimension? It would be useful to have some grounds for

identifying and evaluating design innovations, especially if that is what design

researchers claim to do! The goal here is not a set of practical guides to innovation (e.g.,

instrumentation) or practical agreements of innovation.  There are already a number of

practical criteria for judging innovation.  For example, the legal system judges whether

an innovation deserves a patent based on categories including novelty, non-obviousness,
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and utility.  Historically, however, there was so much variability in legal opinion that it

was necessary to make a single federal court to handle patent cases.  Ideally, we can find

a logic for evaluating innovation that is more stable than pragmatic agreement.

Our goal here is to provide a “sacrificial first draft” for a discussion of warrants

for scientific innovation.  We think this is important because design researchers can best

justify their work in terms of innovation.  If so, it is important to be clear about one’s

grounds for making an innovation warrant.  The significance of being clear comes from

the story of a university job talk.  The candidate described a few heroic teachers who had

teamed together to innovate a successful program in an environment of indifference and

poverty.  This candidate was making an innovation argument by showing that what

people implicitly thought was impossible, actually could be.  The faculty in the audience,

however, challenged the work.  The candidate made a mistake and started to defend

causal claims about the teachers’ success.  This single case could never crisply defend

causal claims.  The work came off as speculation and craft knowledge.  We wish the

candidate had said, “Those are great questions, and the value of this single data point is to

show that these are important questions precisely because our theories should, but cannot,

explain it.  Here are some of the instruments I developed to help us move forward….” As

in all things, knowing the logic of one’s claims can only help.

As we began thinking about the problem of evaluating innovations, we realized

that we, and perhaps others, had confounded two distinct forms of innovation –

innovating new knowledge and innovating material change.  Producing new knowledge

about learning is different from producing a new artifact or social practice, though they

are both important innovations.  The difference between innovating knowledge and
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material change can be captured by two possible stances on the value of design research

that we label “scientific” and “substantive.” Innovations in scientific design involve

discovery and theory, whereas substantive innovations involve changes to the

circumstances of learning.  We begin by drawing the distinction between the two, and

then we describe one warrant for innovation that has logical force for both types of

design research.

Scientific and Substantive Design

Scientific design proposes that design methodologies are the best way to develop

innovative knowledge in educational research.  The assumption is that there are truths

about the world that need to be uncovered.  diSessa and Cobb (2004), for example,

propose that a significant goal of design research is “ontological innovation”—the

invention of new scientific “categories that do useful work in generating, selecting

among, and assessing design alternatives.” (p. 78).  The goal is to uncover categories of

phenomena that support explanation.  We suppose these authors actually meant

“epistemic innovation,” because ontology refers to what exists and epistemology refers to

knowledge of what exists.  These authors are not proposing that the value of design

experiments is to create new existences, but rather to create new knowledge.

In contrast, substantive design holds that the goal of a design experiment is to

improve education per se (as opposed to just improve knowledge of education).  The goal

is to make changes to the world, and design is the shortest distance from idea to change.

Cobb, Confrey, diSessa, Lehrer, and Schauble (2003) state that one purpose of design

experiments “…is to investigate the possibilities for educational improvement by

bringing about new forms of learning in order to study them” (p. 10). These authors
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appear to advocate the creation of new forms of learning, but they justify the endeavor

from a scientific design stance.  A pure substantive position does not justify its efforts in

terms of developing scientific knowledge.  Some of the best technology innovators

appear to adopt a strong substantive position.  They create stunningly innovative

technologies to support learning.  They are less committed to accounts of why or whether

these technologies promote learning.  This seems a useful way to make progress, though

it is important to appreciate that the goal of educational design research is not

technological innovation per se, but rather innovation in learning practices.  Thus,

pointing to an innovative technology is less compelling than pointing to an innovative

learning practice it creates.

Substantive design is appropriate to intervention research because it holds that

research can change reality rather than just study it.   G. H. Mead (1899) captures the

quixotic implication:

In society, we are the forces that are being investigated, and if we advance beyond

the mere description of the phenomena of the social world to the attempt at

reform, we seem to involve the possibility of changing what at the same time we

assume to be necessarily fixed.  (p. 370)

The idea that design can innovate new forces and facts by which the world

operates is inconceivable in domains like physics.  But human affairs take place in a

social world, and the laws that regulate social behavior have their own organization

which is consistent with, but under-determined by, physical and biological laws.

Therefore it may be possible to change the social world by design (e.g., Searle, 1995;

Simon, 1996).  Freire (1970) refers to this as the dialectic of objective and subjective
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experience.  For example, a capitalist economy has a different set of forces than a

communist one.  At some reductionist level, people in capitalist and communist societies

are built from the same fundamental material laws, but at the level of subjective

experience and the objective analysis of that experience, they operate according to

different rules.  Karl Marx’s theory built on the possibility of changing the forces that

regulate our lives.  When he wrote, there were no full-blown communist states.  His

theory could only be true to the extent that it could change reality to fit itself.  This is the

notion of praxis, where the proof of a theory is in the change it creates (Cook, 1994).

Praxis is highly relevant to claims that a new plan for classroom organization will change

what students learn, and it provides an interesting way to warrant a substantive design

innovation.

A Warrant for Innovation

Developing warrants for useful innovation is important, lest the mechanisms for

evaluating innovative work reduce to consumerism.  Toulmin (1972) provides a useful

list of types of conceptual change in science: (1) extension of current procedures to fresh

phenomena; (2) improvement in techniques for dealing with familiar phenomena; (3)

intra-disciplinary integration of techniques; (4) inter-disciplinary integration of

techniques; and, (5) resolution of conflicts between scientific and extra-scientific ideas.

These can be recast into warrants for innovation.  For instance, (1) an instrument can be

considered an innovation if it permits us to observe a fresh phenomenon.  Unlike efficient

science that gains warrants through reliable prediction of the future, each of the resulting

innovation warrants would depend on showing a difference from the past.

Toulmin’s first two categories suggest that one method of warranting an
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innovation is to show that was has been innovated was previously absent.  This works

well for scientific design, because there is a documented canon of knowledge one can

exhaustively search to demonstrate prior absence.  However, demonstrating absence is

problematic for substantive design in the social sciences.  A design may create a

seemingly novel social practice, but then it may turn out there is a tribe in a remote

location that already engages those practices.

Toulmin’s latter three conditions, which emphasize integration, suggest a warrant

that can work for both scientific and substantive design.  The warrant is the reconciliation

of incommensurables, and returns us to Plato’s resolution of Meno’s learning paradox.  In

this case, an innovation warrant depends on finding an incommensurability or

contradiction and then reconciling the horns of the dilemma in a synthesis.  The synthesis

is an innovation by definition, because it resolves what extant knowledge systems could

not.  For learning, one example is the students in our study trying to relate high jumping

and weight lifting scores.  They could not measure distance in terms of weight, or weight

in terms of distance.  The innovation they were struggling towards was a way to

normalize data so they could compare unlike measures.  For them, the solution of

standardized scores was an innovation on logical grounds, because it reconciles within

one structure what their prior knowledge of absolute magnitudes could never do.

Similarly, in science, a powerful logical warrant for innovations in knowledge occurs

when the innovation provides a way to put previously incompatible evidence or theory in

the same rational structure.  Galileo was a master at generating evidence that contradicted

the theories of the day, and then presenting his alternative that was able to synthesize all

the evidence within one framework.
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The reconciliation warrant for innovation can also work for substantive design.  In

this case, it involves the reconciliation of contradictory forces rather than contradictory

knowledge.  The physical world does not contain any contradictions (nature might

contradict our theories, but it cannot contradict itself), but, in the social world of goals

and means, contradictions are possible.  In remote Alaskan villages, for example, schools

attempt to improve village life by preparing native students for jobs that require leaving

the village for the city.  A substantive design that removed this contradiction would have

a strong warrant for innovation through praxis.

To achieve this warrant in substantive design, it is necessary to first identify an

incommensurability or contradiction.  This is a needs assessment, but one with logical

force.  Saying that children have confused identities is a weak needs assessment

compared to one that identifies the contradictory forces that lead to confused identities.

Engestrom (1994) takes this needs assessment approach, for example, by identifying

contradictions in social organizations (e.g., the elderly health care system), and then

creating innovations that resolve those contradictions (e.g., postal workers check elderly

on their rounds).  We find his methodology compelling because it illuminates the

contradiction and shows how the innovation attempts to reconcile this contradiction,

whether or not it works.

In our research, we identified a contradiction that we tried to reconcile.  Most

educators want their students to be on a trajectory to adaptive expertise so they can

continue to learn and make their own choices as citizens.  At the same time, educators try

to promote this goal by implementing efficiency-only curricula and assessments, which

we believe unwittingly contradicts the goal of adaptive expertise.  We tried to resolve this
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contradiction by innovating a knowledge framework that puts innovation and efficiency

together rather than as opposites, and we innovated a pedagogy in which innovation and

efficiency practices can co-exist and put learners on a trajectory towards adaptive

expertise.  Ultimately, we believe our substantive design efforts fell short.  The failure

was not in the study’s outcome; we showed that efficiency measures can miss the value

of innovative experiences whereas PFL measures do not.  Rather, the failure was in

proving the contradiction: perhaps efficiency-only training does lead to adaptive expertise

in the long run and there is no contradiction.  We hope that our instrumentation focus will

enable us to generate subsequent research to determine whether, or when, we are correct.

CONCLUSION

We want to make design experiments a more productive scientific endeavor.

Innovating in educational settings is largely intractable by standards of efficient science;

it is too costly to use the sample sizes and control conditions needed to test every idea of

what could be.  At the same time, “trying stuff out” is not adequate either.  We have been

frustrated by the design experiment debate, because it has reified methodological

positions as incommensurable, while ignoring those things that are most important to

working scientists.  Though discussions of method and theory are very important,

empirical scientists in most fields spend their time working on instrumentation.  We

proposed that it might be profitable to position design experiments in a larger space of

innovation and efficiency.  The question is, what features might be added to design

research to ensure it maximizes the chances for innovation while also setting the stage for

more standard tests of scientific value.

We argued that a focus on instruments that both precipitate and measure effects

has historically been effective at supporting innovation and the turn to efficiency.  There
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is a repertoire of ideas for evaluating instrumentation that do not depend on identifying

causality or generality (e.g., discriminant validity).  We also provided an empirical

demonstration where innovating measures led to impressive learning gains for students,

and hopefully demonstrated the potential of our PFL measures for advancing science.

In the last part of the chapter, we initiated a discussion around the logic of

justification rather than the practical process of innovation.  There can be no logical

method for guaranteeing discovery or innovation (Popper, 1968; Phillips & Burbles,

2000), but we thought it might be possible to work towards a logic for warrants of

innovation.  We think it is important for the design experiment community to create

compelling standards for evaluating its success at innovation.  We have found that people

often try to use efficiency arguments that cannot succeed, or they provide no warrants at

all.  We tried to clarify two arguments for the value of design innovations – scientific

innovations that involve knowledge and substantive innovations that involve change.  We

think the substantive design position is particularly relevant to design researchers, but its

logic of justification has not been sufficiently explored.

We argued that a logical warrant for innovation is the resolution of

incommensurables.  (Not surprisingly, this is also the type of innovation we asked

students to pursue in reconciling contrasting cases.)  This warrant helps draw a strong

distinction between the logic of efficiency and innovation.  Whereas criteria of efficiency

depend on predicting future regularities, the criteria of innovation depend on reconciling

past irregularities.  Reconciling past irregularities requires planned design, but the causal

components of the plan are not being put to test.  What is being put to test is whether the

irregularity is necessary or whether it can be resolved.
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We find the two goals of design research – discover knowledge versus plan

change – equally compelling.  It is an empirical question whether designing our way to a

better educational system is more effective than first developing scientific knowledge and

then engineering change from established “laws.” We do not believe these approaches are

incompatible, and in fact, we suspect that both are needed.  This consideration led, in

part, to our proposal that design experiments would be well-served by explicitly engaging

in instrumental innovation that paves the way for efficient scientific methods, while also

providing the apparatus for creating and recreating the qualities of what could be.
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APPENDIX

Double Transfer Assessment Items (Schwartz & Martin, 2004)

Worked Example Resource Problem Randomly Placed in Half the Posttests

A standardized score helps us compare different things.  For example, in a swim meet, Cheryl's
best high dive score was an 8.3 and her best low dive was a 6.4.  She wants to know if she did better at the
high dive or the low dive.   To find this out, we can look at the scores of the other divers and calculate a
standardized score.

High Dive Low Dive
Cheryl 8.3 6.4
Julie 6.3 7.9
Celina 5.8 8.8
Rose 9 5.1
Sarah 7.2 4.3
Jessica 2.5 2.2
Eva 9.6 9.6
Lisa 8 6.1
Teniqua 7.1 5.3
Aisha 3.2 3.4

To calculate a standardized score, we find the average and the mean deviation of the scores.  The average
tells us what the typical score is, and the mean deviation tells us how much the scores varied across the
divers.  Here are the average and mean deviation values:

 High Dive Low Dive
Average 6.7 5.9
Mean Deviation 1.8 1.9

The formula for finding Cheryl’s standardized score is her score minus the average, divided by the mean
deviation.   We can write:

Cheryl’s score – average score OR X – mean of x
mean deviation mean dev x

To calculate a standardiazed score for Cheryl's high dive of 8.3 , we plug in the values:
(8.3-6.7) = 0.85

1.8
Here is the calculation that finds the standardized score for Cheryl's low dive of 6.4.

(6.4-5.9) = 0.26
1.9

Cheryl did better on the high dive because she got a higher standardized score for the high dive than the
low dive.

• Cheryl told Jack about standardized scores.  Jack competes in the decathlon.   He wants to know if
he did better at the high jump or the javelin throw in his last meet.  He jumped 2.2 meters high and
he threw the javelin 31 meters.  For all the athletes at the meet, here are the averages and mean
deviations:

 High Jump Javelin
Average 2.0 25.0
Mean Deviation 0.1 6.0

Calculate standardized scores for Jack’s high jump and javelin and decide which he did better at.
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Example of a Target Transfer Problem in the Posttest

Susan and Robin are arguing about who did better on their final exam last period.  They are in different

classes, and they took different tests.   Susan got an 88 on Mrs.  Protoplasm’s biology final exam.  In her

class, the mean score was a 74 and the average deviation was 12 points.   The average deviation indicates

how close all the students were to the average.   Robin earned an 82 on Mr.  Melody’s music exam.  In that

class, the mean score was a 76 and the average deviation was 4 points.   Both classes had 100 students.

Who do you think scored closer to the top of her class, Susan or Robin?  Use math to help back up your

opinion.


