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Mathematics has a level of structure that transcends untutored intuition. What is the cog-
nitive representation of abstract mathematical concepts that makes them meaningful? We
consider this question in the context of the integers, which extend the natural numbers
with zero and negative numbers. Participants made greater and lesser judgments of pairs
of integers. Experiment 1 demonstrated an inverse distance effect: When comparing num-
bers across the zero boundary, people are faster when the numbers are near together
(e.g., —1 vs. 2) than when they are far apart (e.g., —1 vs. 7). This result conflicts with a
straightforward symbolic or analog magnitude representation of integers. We therefore
propose an analog-x hypothesis: Mastering a new symbol system restructures the existing
magnitude representation to encode its unique properties. We instantiate analog-x in a
reflection model: The mental negative number line is a reflection of the positive number
line. Experiment 2 replicated the inverse distance effect and corroborated the model.
Experiment 3 confirmed a developmental prediction: Children, who have yet to restructure
their magnitude representation to include negative magnitudes, use rules to compare neg-
ative numbers. Taken together, the experiments suggest an abstract-to-concrete shift:
Symbolic manipulation can transform an existing magnitude representation so that it
incorporates additional perceptual-motor structure, in this case symmetry about a bound-
ary. We conclude with a second symbolic-magnitude model that instantiates analog-x using
a feature-based representation, and that begins to explain the restructuring process.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

What are the cognitive underpinnings of abstract mathe-
matical concepts that make them meaningful?

Mathematics has a level of structure that transcends
untutored intuition. Cantor’s theory of transfinite numbers
enables us to speak of infinity, a “number” we never
encounter, and even of a hierarchy of infinities. Mathemat-
ics also describes empirical phenomena that cannot be di-
rectly experienced. For example, Einstein’s theory of
general relativity uses the counterintuitive geometry of
Riemann to characterize the curvature of space-time.

* Corresponding author. Tel.: +1 612 625 6718; fax: +1 612 624 8241.
E-mail addresses: sashank@umn.edu (S. Varma), daniel.schwartz@
stanford.edu (D.L. Schwartz).
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The integers, which extend the natural numbers with
zero and negative numbers, are abstract numbers.' They
are meaningful for adults despite the fact that they do not
have ready perceptual-motor referents. One does not handle
negative physical objects, and zero is arguably the prototype
of abstraction, a form without substance. It was only a few
100 years ago that mathematicians properly formalized
integers. For these reasons, the mathematician Felix Klein
(1925) claimed that with integers, “for the first time, we

1 Mathematicians variously define the natural numbers as the positive
integers {1,2,3,...} or the non-negative integers {0,1,2,3,...}. We use the
term to denote one or the other class depending on the local context.
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meet the transition from concrete to formal mathematics.
The complete mastery of this transition requires a higher-
order ability in abstraction” (p. 23). The meaningfulness of
integers for adults makes them a useful test case for investi-
gating how people come to understand abstract mathemat-
ical concepts that are unlikely to be innate or induced from
everyday experiences.

Integer understanding is also relevant for the cognitive
science debate between symbolic and embodied represen-
tations in higher-order cognition (Anderson, 1978;
Kosslyn, 1981; Landy & Goldstone, 2007; Miller &
Johnson-Laird, 1976; Pylyshyn, 1981). Symbolic theories
characterize the acquisition of mathematical concepts as
the compilation of symbolic rules into efficient and auto-
matic procedures (Anderson, 1982; Newell, 1990). Affili-
ated instructional methods emphasize the mastery of
symbolic rules (Anderson, Corbett, Koedinger, & Pelletier,
1995; Kaminski, Sloutsky, & Heckler, 2008). By contrast,
embodied theories describe mathematics learning as
abstraction over perceptual-motor experience (Barsalou,
1999; Glenberg, 1997; Johnson, 1987; Lakoff & Nifiez,
2000; Varela, Thompson, & Rosch, 1992). Associated
instructional methods often involve grounding symbolic
notations, structures, and rules in hands-on activities
(Montessori, 1966).

Here, we propose a different learning progression — an
abstract-to-concrete shift. Symbolic rules restructure per-
ceptual-motor representations to serve higher order cogni-
tion. When learning integers, children already have an
analog magnitude representation of natural number that
exhibits perceptual-motor properties (Moyer & Landauer,
1967; Sekuler & Mierkiewicz, 1977). Because negative
numbers and zero do not have a ready perceptual-motor
basis, children initially understand them by using symbolic
rules that map them to natural numbers. With experience,
the structure of the symbolic rules transforms the original
magnitude representation of natural number to directly
embody the unique properties of the integers, such as the
fact that zero is a boundary between positives and nega-
tives. By this restructuring hypothesis, symbolic rules pro-
vide a mechanism for articulating perceptual-motor
representations into richer and more abstract concepts.

1.1. From the natural numbers to the integers

Natural numbers can be mentally represented as analog
magnitudes. A key piece of evidence is that the time it
takes to judge which of two natural numbers is greater
exhibits a continuous logarithmic function that is also
found when comparing physical quantities, such as the
loudness of two tones. In a seminal study, Moyer and Lan-
dauer (1967) had participants judge which of two natural
numbers was greater. Participants exhibited a symbolic dis-
tance effect: They were faster comparing numbers that
were far apart (1 vs. 9) than near together (1 vs. 4). The dis-
tance effect is commonly interpreted as evidence for a
mental number line such that magnitudes that are farther
apart on the line are easier to discriminate (Restle, 1970). A
related finding is the size effect: For pairs of natural num-
bers a fixed distance apart, people are faster comparing
smaller numbers (1 vs. 4) than larger numbers (6 vs. 9)

(Parkman, 1971). The size effect indicates that the number
line is psychophysically scaled, because smaller magni-
tudes are easier to discriminate than larger magnitudes.

Two hypotheses have been advanced in the literature
for how the natural numbers are extended to the integers,
which we refer to as symbol+ and analog+. Symbol+ pro-
poses that the magnitude representation of natural num-
bers is supplemented with symbolic rules for handling
zero and negative numbers. (The ‘+’ denotes symbols plus
magnitudes.) This has been referred to as the ‘phyloge-
netic’ hypothesis (Fischer, 2003), the ‘magnitude-polarity’
hypothesis (Shaki & Petrusic, 2005), and the ‘components’
representation (Ganor-Stern & Tzelgov, 2008; Tzelgov,
Ganor-Stern, & Maymon-Schreiber, 2009). The resulting
hybrid representation is shown in Table 1. By this ac-
count, when comparing positive numbers (1 vs. 9), people
consult their natural number line. The farther apart the
numbers, the faster the judgment. When comparing neg-
ative numbers, people use symbolic rules to strip signs
and invert the predicate (e.g., which of —1 vs. -9 is great-
er becomes which of 1 vs. 9 is lesser). They then use the
natural number line to compare the magnitudes (e.g., that
1 <9 implies that —1 > —9). When comparing a positive
number and a negative number (-1 vs. 7), people apply
rules such as “positives are greater than negatives,” and
there is no need to consult magnitude representations.
Therefore, they should not exhibit distance effects for
mixed comparisons of a positive number and a negative
number.

Analog+ proposes that the magnitude representation of
natural numbers is extended by adding magnitude repre-
sentations of zero and negative numbers to the mental
number line. This hypothesis has been called the ‘ontoge-
netic’ hypothesis (Fischer, 2003), the ‘number-line’
hypothesis (Shaki & Petrusic, 2005), and the ‘holistic’ rep-
resentation (Ganor-Stern & Tzelgov, 2008; Tzelgov et al.,
2009). A spatial model of the analog+ hypothesis is shown
in Table 1. By this account, the mental number line has the
same topological organization as the conventional number
line of mathematics. Thus, unlike symbol+, analog+ pre-
dicts that all comparisons of integers should show distance
effects, including mixed comparisons.

This paper hypothesizes a third representation of inte-
gers we call analog-x. The ‘X’ denotes a transformation of
the magnitude representation of natural numbers. Criti-
cally, this representation includes additional structure
reflecting the unique properties of the integer symbol sys-
tem relative to the natural number symbol system, such as
the additive inverse property: For every integer x, there ex-
ists an integer —x such that x + (—x) = 0. The human capac-
ity to transform analog magnitude representations to
incorporate symbolic structure is what makes it possible
to have semantic, perceptual-motor representations of ab-
stract mathematical concepts. We present one instantia-
tion of analog-x after the results of Experiments 1 are in
hand, and another in Section 6.

1.2. Prior studies of integers

The literature reports two broad classes of behavioral
effects for integer comparisons — magnitude effects and
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Table 1
Symbol+ and analog+ distance effect predictions for different comparison types.
Comparison  Distance Symbol+ Analog+
Far Near Process Product Process Product
Positive 1vs.9 1vs.4 Judge magnitudes —n Judge magnitudes *~—
e—— —
—_— <+ } >
1 9 -9 0 9
Negative -9vs. -1 —4vs.—-1 (1) Strip signs —-9vs.—-1-59vs.1 Judge magnitudes —y
—4vs.—1->4vs. 1 P—
(2) Invert predicate® > <
(3) Judge magnitudes — G <+ $ >
D—— = 9 0 9
P
1 9
Mixed —1vs. 7 —1vs.2 Positives > negatives 7>-1 Judge magnitudes *—
2>-1 O——
all 1 L
9 0 9
Zero 0vs. 8 Ovs.3 Positives > zero 8>0 Judge magnitudes *—e
Zero > negatives 3>0 P—
al 1 L
B} T —
9 0 9

2 Example assumes a greater comparison.

judgment effects. The effects are defined with respect to
the different types of integer comparisons (Table 1).
Positive comparisons involve two natural numbers. Nega-
tive comparisons involve two negative numbers. Mixed
comparisons involve a positive and a negative. If the posi-
tive has the greater absolute value, then the comparison is
mixed-positive, and if the negative is greater, then it is
mixed-negative. Finally, there are two types of zero compar-
isons: zero vs. a positive (zero-positive), and zero vs. a neg-
ative (zero-negative).

1.2.1. Magnitude effects

A magnitude effect is one where the magnitudes (i.e.,
absolute values) of numbers influence comparison time,
per the distance and size effects. They are of primary
importance because they are the basis for differentiating
symbol+ and analog+. Both hypotheses predict magnitude
effects for positive comparisons because both propose that
people directly consult a positive number line. Addition-
ally, both hypotheses predict magnitude effects for nega-
tive comparisons, but for different reasons. Analog+
proposes that people directly consult the negative number
line. Symbol+ proposes that people indirectly consult a
number line representation, first using rules to handle
the negative signs and then the natural number line to
judge their absolute magnitudes. Because a mental number
line is consulted in both cases, the finding of a distance ef-
fect for negative comparisons (Tzelgov et al., 2009; Krajcsi
& Igacs, 2010) does not differentiate the hypotheses. And,
because mental number lines are psychophysically scaled,
the finding of a size effect for negative comparisons does
not differentiate the hypotheses (Ganor-Stern & Tzelgov,
2008; Shaki & Petrusic, 2005).

By contrast, mixed and zero comparisons distinguish
the hypotheses. Symbol+ proposes these comparisons are
completely handled by rules; for example, “positives are
greater than negatives.” Thus, there should be no effect
of magnitude for these comparison types. By contrast, ana-
log+ proposes that mixed and zero comparisons are han-
dled with an extended number line, so there should be
an effect of magnitude. Prior studies of these comparisons
types have produced conflicting results. Tzelgov et al.
(2009) did not find a distance effect for mixed compari-
sons, consistent with symbol+. By contrast, Krajcsi and
Igacs (2010) found an inverse distance effect for mixed com-
parisons. People were faster for near mixed comparisons
(e.g., —1 vs. 5) than far mixed comparisons (e.g. —9 vs. 5).
This finding is inconsistent with both symbol+ and ana-
log+. Finally, Fischer and Rottman (2005) found a distance
effect for zero-positive comparisons, but not for zero-neg-
ative comparisons. The distance effect for zero-positive
comparisons is consistent with both analog+ and symbol+
if one assumes that zero is part of the natural number line
and hence treated as a magnitude. However, the absence of
a distance effect for zero-negative comparisons is consis-
tent only with symbol+.

1.2.2. Judgment effects

Judgment effects occur when number magnitudes are
associated with cognitive or visuo-motor processes. The
semantic congruence effect depends on the cognitive pro-
cess of judging greater or lesser. When comparing large
natural numbers (6 vs. 9), people make greater judgments
faster than lesser judgments. When comparing small natu-
ral numbers (1 vs. 4), people make lesser judgments faster
than greater judgments (Banks, Fujii, & Kayra-Stuart, 1976;
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Holyoak, 1978). This is taken as evidence that the right and
left poles of the mental number line for natural numbers
are associated with the greater and lesser predicates,
respectively.

Symbol+ predicts a semantic congruence effect for posi-
tive comparisons. It does not predict a semantic congru-
ence effect for negative comparisons because it proposes
that people do not represent negative magnitudes directly.
Consistent with symbol+, Ganor-Stern and Tzelgov (2008)
and Tzelgov et al. (2009) found a semantic congruence ef-
fect for positive comparisons, but not for negative
comparisons.

Analog+ differs from symbol+ under the assumption
that positive numbers are associated with greater judg-
ments and negative numbers with lesser judgments. There
should be a semantic congruence effect for positive com-
parisons - greater judgments should be faster than lesser
judgments - and this should extend to all comparisons that
are positive dominant (mixed-positive and zero-positive,
where the positive number has the greater absolute value).
And, there should be an inverse semantic congruence effect
for negative comparisons - lesser judgments should be fas-
ter than greater judgments — and this should extend to all
comparisons that are negative dominant (mixed-negative
and zero-negative, where the negative number has the
greater absolute value). Consistent with analog+, Shaki
and Petrusic (2005) found a semantic congruence effect
for positive comparisons and an inverse semantic congru-
ence effect for negative comparisons.

A second judgment effect depends on the association
between number magnitude and the left and right sides
of space. The Spatial-Numerical Association of Response
Codes (SNARC) effect is the finding that people respond
faster on the left side of space when judging small natural
numbers and faster on the right side when judging large
natural numbers (Dehaene, Bossini, & Giraux, 1993;
Fischer, 2003).2 This suggests that the mental number line
has the conventional left-to-right orientation for positive
numbers. Using a parity judgment task - deciding odd or
even - Fischer and Rottman (2005) found an inverse SNARC
effect for negative numbers. People made left responses fas-
ter when judging large negative numbers (e.g., —1,) and
made right responses faster when judging small negative
numbers (e.g., —9). This is consistent with symbol+, which
proposes that people understand negative numbers by strip-
ping their signs and mapping them to positive numbers (e.g.,
the large negative number —1 is mapped to the small posi-
tive number 1). By contrast, Shaki and Petrusic (2005) found
a standard SNARC effect, with positive comparisons faster
with right responses and negative comparisons faster with
left responses. This is consistent with analog+ under the
assumption that positive magnitudes are associated with

2 Although the conventional interpretation of the SNARC effect is that it
reflects the direct association between number magnitudes and the left and
right sides of space, recent research suggests that this association is
indirect, mediated by the categories +polarity and -polarity (Proctor & Cho,
2006) or the verbal labels “large” and “small” (Gevers et al., 2010; Santens
& Gevers, 2008). Regardless of whether the association is direct or indirect,
the SNARC effect remains a judgment effect because it is not a function of
number magnitudes themselves, as is the case for the distance and size
effects.

right responses and negative magnitudes with left
responses.

1.2.3. Explaining the inconsistencies

Both the magnitude and judgment data exhibit incon-
sistencies across experiments - sometimes supporting
symbol+, sometimes analog+, and sometimes neither
hypothesis. Rather than discounting the results or the
hypotheses, it is possible that people switch between rep-
resentations depending on contextual or task factors. For
example, even if people have a magnitude representation
of negative numbers, as proposed by analog+, it is easy to
imagine that given a steady stream of mixed comparisons,
they would eventually ignore the number magnitudes and
follow the rule “positives are greater than negatives,” as
proposed by symbol+. This might explain why Tzelgov
et al. (2009) found no effect of distance for mixed compar-
isons. That study was designed to evaluate the relative
contributions of intentional vs. automatic processing, and
therefore included thousands of trials, more than half of
which were mixed comparisons. The preponderance of
mixed trials may have encouraged people to apply the rule
of looking at the signs of numbers and ignore their magni-
tudes, and thus behave in concordance with symbol+.

Contextual factors may also be responsible for conflict-
ing judgment effects. For example, Ganor-Stern and
Tzelgov (2008) used two-digit numbers instead of one-
digit numbers to study the semantic congruence effect.
Nuerk, Weger, and Willmes (2001) demonstrated that
two-digit numbers are not represented as simple magni-
tudes, but rather are broken down into tens and ones com-
ponents through symbolic operations. This symbolic
processing may have primed participants to adopt a sym-
bol+ representation. There are also contextual differences
between studies finding conflicting SNARC effects. Fischer
and Rottman (2005) used a parity judgment task, whereas
Shaki and Petrusic (2005) used a number comparison task.
In a clear demonstration of the effect of context, Shaki and
Petrusic (2005) showed that the direction of the SNARC ef-
fect depends on whether positive and negative compari-
sons are blocked or intermixed.

If contextual factors influence the number representa-
tions that people employ for a particular task, then the
search should not be for the single representation that
underlies all performance, but rather for the range of rep-
resentations that people have at their disposal. Our pro-
posal is that adults have an analog-x representation of
integers that they can consult, but that children, who have
had much less experience with negative numbers, have not
developed an analog-x representation, and therefore rea-
son using a symbol+ representation.

1.3. Plan for this paper

The purpose of the current research is not to choose be-
tween symbol+ and analog+, but rather to investigate the
hypothesis that adults also have an analog-x representation
that encodes more mathematical structure than is available
in natural numbers. We focus on the magnitude effects,
particularly the effect of distance for mixed comparisons,
as it is most diagnostic. We demonstrate that relatively
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experienced adults can consult an analog-x representation,
whereas relatively inexperienced children cannot, even
though they can make integer comparisons effectively.

Experiment 1 demonstrates an inverse distance effect
for mixed comparisons (Krajcsi & Igacs, 2010; Varma, Sch-
wartz, Lindgren, & Go, 2007). Adults are faster at mixed
comparisons when the numbers are near together (—1 vs.
2) than when they are far apart (-1 and 7). This is incon-
sistent with both symbol+ and analog+, and leads to the
attribution of the additional structure of analog-x. We
instantiate analog-x in a formal model that proposes that
the negative number line is a reflection of the positive
number line. This model accounts for the inverse distance
effect for mixed comparisons, as well as the other findings
of Experiment 1. Experiment 2 uses a different participant
population and different experimental paradigm to ensure
the generalizability of the model’s fit.

Experiment 3 evaluates the developmental claim that
children have not yet restructured their number represen-
tation into analog-x, and therefore use the symbol+ repre-
sentation. We conclude by offering a second formal model
that instantiates analog-x using a feature-based represen-
tation. This model begins to explain the process by which
symbolic rules transform analog representations to incor-
porate additional structure. It represents an important step
in reconciling theories that emphasize either continuous or
discrete aspects of number, but not both.

2. Experiment 1

Experiment 1 investigated the adult mental representa-
tion of integers. Highly educated adults viewed two integers
and judged which was greater (or lesser). All four integer
comparison types were intermixed within each block to
minimize the adoption of task-dependent strategies that
would apply to one comparison type but not others (e.g., “al-
ways choose the positive number”). For each comparison
type, judgments were made at two distances, near and far,
which provides the relevant contrast for evaluating the dis-
tance effect. Mixed comparisons (positives vs. negatives) are
of particular interest because symbol+ predicts that there
should be no effect of distance — near and far judgments
should be equally fast. By contrast, analog+ predicts that
there should be a standard distance effect, with near judg-
ments slower than far judgments. Experiment 1 also evalu-
ated the size, semantic congruence, and SNARC effects.

2.1. Method

2.1.1. Participants

Twenty-one graduate students (16 female; 2 left-
handed) from the Stanford University School of Education
participated for course credit. All reported normal or cor-
rected-to-normal vision.

2.1.2. Stimuli and design

The integers were grouped into five sets: small natural
numbers {1,2,3,4}, large natural numbers {6,7,8,9}, small
negative integers {—1,—2,—3, -4}, large negative integers
{-6,-7,-8,-9}, and zero {0}. We define the size of an inte-
ger x by its absolute value - small if |x| <5 and large if

|x| > 5. By this definition, —1 and 2 are small integers, and
—8 and 9 are large. This simplifies the analysis of the size
effect below.

The stimuli were pairs of integers that formed three
fully crossed within-subjects factors: comparison type, dis-
tance, and predicate. The first factor, comparison type, had
four levels: positive, negative, mixed, and zero. There were
also sub-factors (mixed-positive, mixed-negative, zero-po-
sitive, and zero-negative) that we describe in the Results
section.

The second factor, comparison distance, had two levels:
near and far. Distance was defined as the mathematical
distance of the integers being compared (|x — y|). not as
the absolute distance (||x| — [y||). This distinction is only
relevant for mixed comparisons, for example the mathe-
matical distance between —1 vs. 2 is 3, whereas the abso-
lute distance is 1. Near-distance stimuli had a distance of 2
or 3, and far-distance stimuli had a distance of 7 or 8. For
positive, negative, and zero comparisons, near-distance
stimuli were formed by pairing two small integers (includ-
ing zero) or pairing two large integers. Far-distance stimuli
were formed by pairing a small integer (including zero)
with a large integer. Mixed comparisons were formed dif-
ferently. Near-distance stimuli paired a small positive inte-
ger and a small negative integer (—1 vs. 2). Far-distance
stimuli paired a small negative integer and a large positive
integer (—1 vs. 7) or vice versa (—7 vs. 1).

This composition scheme equated the mathematical
distance of the near and far levels across the four compar-
ison types. It also ensured that distance and size were not
confounded for mixed comparisons. Specifically, if far-dis-
tance stimuli were formed by pairing large integers (—8 vs.
9), and if near-distance stimuli were formed by pairing
small integers (—1 vs. 2), then it would be impossible to
determine whether response time differences between
near and far stimuli represent a distance effect or a size
effect.

The five sets of integers and foregoing constraints
yielded 44 stimuli. Each appeared twice within each exper-
imental block, once in each left-right order (1 vs. 9,9 vs. 1),
for a total of 88 stimuli per block. Stimuli were randomly
ordered within each block. There were four experimental
blocks.

The third factor, comparison predicate, had two levels:
choose the greater or lesser number. It was varied across
blocks to minimize participant confusion within a block.
Participants were randomly assigned to one of two predi-
cate orders (> <> < and < ><>).

2.1.3. Procedure

The stimuli appeared on a PC running E-Prime with a
CRT monitor measuring 40.25 cm diagonally. Using a
5-button response box, participants placed a left-hand fin-
ger on the leftmost button and a right-hand finger on the
rightmost button. Participants completed practice blocks
of 12 greater and 12 lesser judgments sampled from each
cell of the design. They then completed the four experi-
mental blocks. Each block began with 12 unmarked prac-
tice trials to allow participants to switch into making
greater or lesser judgments.
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On each trial, “Ready” appeared in 18-point Courier font
in the center of the screen for 1000 ms, followed by a fixa-
tion cross for 1000 ms, followed by the pair of numbers,
which appeared two spaces to the left and right of center.
Positive numbers were presented without a “+” sign. Par-
ticipants pressed the button below the greater (or lesser)
number. After a response or a 3000 ms deadline, the stim-
ulus was replaced with feedback for 1500 ms: “Correct” or
“Incorrect” or “No response detected”. Each block lasted
approximately 7 min, and the overall experiment lasted
approximately 35 min.

2.2. Results

To preview the results, the most important finding is
the inverse distance effect for mixed comparisons
(Fig. 1a). People were faster when mixed comparisons
were near (—1 vs. 2) than when they were far (-1 vs. 7).
This is inconsistent with both symbol+ and analog+. Table 2
presents the descriptive and inferential statistics concern-
ing the distance, size, semantic congruence, and SNARC ef-
fects for all relevant comparison types.

We trimmed responses outside the interval of 200-
2000 ms (0.44% of the data), and responses more than three
standard deviations from each participant’s mean (1.84% of
the data). The error rate was low (M = 1.99%, SEM = 1.56%),
and there was no speed-accuracy tradeoff (r=0.561,
p <.001, when correlating the mean response time and error
rate across the 16 cells of the factorial design). Therefore, all
analyses used response times on correct trials.

2.2.1. Magnitude effects

The magnitude effects are of primary interest as they
directly inform the nature of the mental representation
of integers. We first analyzed the distance effect for all four
comparisons types. We then investigated the size effect for
positive and negative comparisons.

2.2.1.1. Distance effect. Comparison type (positive, negative,
mixed, zero), distance (near, far), and predicate (greater,
lesser) were crossed in a repeated measures MANOVA. This
section reports the distance (magnitude) effects. The pred-
icate (judgment) effects are reported below.

(a) Distance Effect

900
—-Positive

'g & Negative
g 800 f + -o-Mixed
o | TTTTee-all
E -
= 700
c
2
®
g 600 f
o
o

500

Near Far

Distance

Comparison Time (msec)
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There was a main effect of comparison type
(F(3,18)=68.485, p<.001). The positive comparison,
which is the standard in the literature, was designated an
a priori contrast for the other comparison types. Positive
comparisons were faster than negative comparisons
(F(1,20) =155.818, p <.001), slower than mixed compari-
sons (F(1,20)=11.394, p=.003), and the same speed as
zero comparisons (p=.599). There was also an overall
main effect of distance (F(1,20)=11.441, p =.003), with
far comparisons (M =627 ms, SEM =18 ms) faster than
near comparisons (M = 639, SEM = 19).

Of greater interest is the reliable interaction between
comparison type and distance (F(3,18)=15.528, p <.001).
Positive and negative comparisons had comparable dis-
tance effects (p =.441). By contrast, positive and mixed
comparisons had different distance effects (F(1,20)=
37.101, p<.001), as did positive and zero comparisons
(F(1,20) = 6.880, p =.016).

Critically, mixed comparisons exhibited an inverse dis-
tance effect. Near comparisons (—1 vs. 2) were faster than
far comparisons (—1 vs. 7). This pattern was stable across
participants. Nineteen of 21 participants showed an in-
verse distance effect for mixed comparisons (p <.001,
binomial test), which compares favorably with the 18
who showed a distance effect for positive comparisons
(p=.001), and the 17 who showed a distance effect for
negative comparisons (p =.007). The inverse distance ef-
fect is inconsistent with both symbol+ and analog+.

Given the omnibus effects, we conducted a more pre-
cise analysis of the mixed comparisons by partitioning
them into mixed-positive and mixed-negative compari-
sons based on whether the positive number had a greater
absolute value than the negative number (—1 vs. 7) or
not (—7 vs. 1). Arepeated measures MANOVA crossed com-
parison type (mixed-positive, mixed-negative) and dis-
tance (near, far). Mixed-positive comparisons were faster
overall than mixed-negative comparisons (F(1,20)=
4.584, p =.045). There was also a reliable inverse distance
effect (F(1,20)=21.532, p <.001). Critically, there was no
interaction (p =.748), indicating that the inverse distance
effect was comparable for both comparison types.

There was no effect of distance for zero comparisons.
We partitioned them into zero-positive comparisons (0

(b) Size Effect
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Fig. 1. Experiment 1 magnitude effects. Distance effect (a) for positive, negative, and mixed comparisons. (b) Size effect for positive and negative

comparisons.
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Table 2
Distance, size, semantic congruence, and SNARC effects for Experiment 1.

Distance effect Overall® Far Near t(20)° p Direction
Positive 604 (17) 588 (16) 620 (18) 4.324 <.001 Standard
Negative 742 (24) 722 (23) 763 (25) 4.464 <.001 Standard
Mixed 579 (18) 592 (19) 565 (18) -4.917 <.001 Inverse

Mixed-positive 570 (17) 583 (19) 557 (17) —2.456 .023 Inverse

Mixed-negative 585 (19) 600 (20) 570 (19) —3.826 .001 Inverse
Zero 608 (17) 608 (17) 607 (18) -0.072 .943

Zero-positive 599 (18) 591 (18) 607 (20) 1.245 227

Zero-negative 614 (18) 623 (19) 606 (18) -1.752 .095 (Inverse)
Size effect Near/small Near/large t(20) p Direction
Positive 589 (17) 652 (21) 6.180 <.001 Standard
Negative 738 (22) 789 (29) 4337 <.001 Standard
Semantic congruence effect Greater Lesser t(20) p Direction
Positive 565 (17) 642 (19) 5.975 <.001 Standard
Negative 785 (27) 700 (22) -5.178 <.001 Inverse
Mixed 580 (17) 577 (22) —-0.228 .822

Mixed-positive 551 (17) 594 (21) 2.796 .011 Standard

Mixed-negative 600 (18) 565 (23) —2.325 .031 Inverse
Zero 604 (17) 611 (21) 0376 711

Zero-positive 595 (20) 605 (21) 0.470 .644

Zero-negative 612 (19) 617 (23) 0.217 831
SNARC effect Slope®© t(20) p Direction
Positive 0.95 (3.61) 0.263 795
Negative 1.10 (5.62) 0.195 .848
Positive and negative -0.81 (1.33) -0.609 .550

2 Measures are reported M (SEM).
b Comparisons of near—far, large-small, lesser-greater, slope vs. 0.

¢ Predicting RT (right hand-left hand) from the mean of each near-distance number pair. A negative slope indicates a standard SNARC effect and a

positive slope an inverse SNARC effect.

vs. 3) and zero-negative comparisons (—3 vs. 0) and con-
ducted a repeated measures MANOVA crossing comparison
type and distance (near, far). There were no main effects
(ps>0.19), but the interaction was reliable
(F(1,20)=6.636, p=.018). There was a marginal inverse
distance effect for zero-negative comparisons, and no ef-
fect of distance for zero-positive comparisons (Table 2).

2.2.1.2. Size effect. The preceding analyses indicated that
the distance effects were consistent with a magnitude rep-
resentation of negative numbers. We next investigate
whether this representation is psychophysically scaled by
analyzing the size effect. The size effect can only be ana-
lyzed for near-distance comparisons (1 vs. 3, 7 vs. 9), be-
cause far-distance comparisons (1 vs. 9) include both
small and large numbers. Recall that in these analyses, size
is defined by the absolute value of the numbers being
compared (e.g., —9 vs. —7 is a large comparison). A re-
peated measures MANOVA crossed comparison type (posi-
tive, negative), size (small, large), and predicate (greater,
lesser). (Predicate effects are described with the judgment
effects below.) The results appear in Fig. 1b and Table 2.
There was a main effect of size (F(1,20)=46.494,
p <.001), with small comparisons (M = 663, SEM = 19) fas-
ter than large comparisons (M =721, SEM =24). There
was a main effect of comparison type (F(1,20)=135.076,
p <.001), with positive comparisons faster than negative
comparisons. The size effects for positive and negative
comparisons were comparable, as indicated by the lack of

an interaction (p =.380). This indicates that the negative
numbers, like the natural numbers, have greater resolution
when they are closer to zero.

2.2.2. Judgment effects

2.2.2.1. Semantic congruence effect. We report effects of the
predicate factor (greater, lesser) from the preceding MANO-
VA of comparison type by distance by predicate. Fig. 2a
shows the only reliable predicate effect: an interaction be-
tween predicate and comparison type (F(3,18)=25.850,
p <.001; other predicate effects, p >.33). The effect of pred-
icate on positive comparisons was different from its effect
on negative, mixed, and zero comparisons (ps <.001). Ta-
ble 2 shows the results of paired t-tests evaluating the effect
of predicate for each comparison type. Greater judgments
were faster than lesser judgments for positive comparisons
and mixed-positive comparisons — the standard semantic
congruence effect. By contrast, lesser judgments were faster
than greater judgments for negative and mixed-negative
comparisons — an inverse semantic congruence effect. This
suggests that people had associated lesser with negative
numbers in this task. There was no effect of predicate for
Zero comparisons.

To examine mixed comparisons more closely, a re-
peated measures MANOVA crossed comparison type
(mixed-positive, mixed-negative) and predicate (greater,
lesser). Neither main effect was reliable (ps >.13), but as
is evident in Fig. 2b, there was a reliable interaction
(F(1,20)=24.112, p<.001) such that mixed-positive



370

(a) Semantic Congruence Effect

900
-I~Positive

’g - Negative
E 800 1 +\\ -®-Mixed
@ Tl
= L S~
- 700 +
o
2
®
g 600 [
o
o

500

Greater Lesser
Predicate

S. Varma, D.L. Schwartz/Cognition 121 (2011) 363-385

(b) Mixed Semantic Congruence Effect
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Fig. 2. Experiment 1 semantic congruence effect (a) for positive, negative, and mixed comparisons and (b) broken down for mixed-positive and mixed-

negative comparisons.

comparisons showed the standard semantic congruence
effect and mixed-negative comparisons showed the in-
verse effect (Table 2). A similar MANOVA on zero compar-
isons (zero-positive, zero-negative) crossed with predicate
showed no effects (ps >.20).

The previous size effect analysis (small vs. large) in-
cluded the predicate factor. We report the predicate effects
here. There was no main effect of predicate (p=.423).
There was a comparison type by predicate interaction
(F(1,20) = 45.815, p <.001), consistent with the standard
semantic congruence effect for positive comparisons and
the inverse semantic congruence effect for negative com-
parisons. Critically, the three-way interaction of compari-
son type, size, and predicate was not reliable (p =.449).
This implies that the semantic congruence effects are cat-
egorical: the association is between the predicate (greater
and lesser) and sign of the numbers (positive and negative,
respectively), and it is not graded by their magnitude.

2.2.2.2. SNARC effect. The design of the stimuli balanced
correct responses across the right and left buttons, e.g.,
participants made greater judgments of both 1 vs. 3 (right
response) and 3 vs. 1 (left response). A SNARC effect occurs
when right responses are faster when judging pairs of large
numbers and left responses are faster when judging pairs
of small numbers. Therefore, the SNARC analysis only con-
siders near-distance comparisons, because far-distance
comparisons include both a small and large number. Three
regressions were conducted for each participant: one for
positive comparisons alone, one for negative comparisons
alone, and one for positive and negative comparisons com-
bined. For each regression, the independent variable was
the mean of each number pair and the dependent variable
was the mean right-hand response time minus the mean
left-hand response time. A negative beta weight indicates
a standard SNARC effect (left responses are faster for smal-
ler number pairs and right responses are faster for larger
number pairs), and a positive beta weight indicates an in-
verse SNARC effect (left responses are slower for smaller
number pairs and right responses are slower for larger
number pairs). Table 2 shows the average beta weight
across participants for positive comparisons alone, nega-
tive comparisons alone, and positive and negative compar-

isons combined. None differed reliably from zero (ps > .54),
indicating an absence of SNARC effects.

2.3. Discussion

Experiment 1 demonstrated standard distance and size
effects for positive and negative comparisons, consistent
with both symbol+ and analog+. Critically, mixed compar-
isons exhibited an inverse distance effect — near compari-
sons (—1 vs. 2) were faster than far comparisons (—1 vs.
7). This finding is inconsistent with symbol+, which pro-
poses that people apply a rule for mixed comparisons
(“positives are greater than negatives”), and therefore pre-
dicts no effect of distance. This finding is also inconsistent
with analog+, which proposes that people consult a mental
number line augmented with negative numbers and zero,
and therefore predicts a standard distance effect. The in-
verse distance effect was stable across participants, and it
held up when partitioning the date more finely into
mixed-positive and mixed-negative comparisons.

The results indicate that number comparisons are facil-
itated when numbers closely straddle the zero boundary,
as is the case for near-distance mixed comparisons. This
is analogous to the finding of categorical perception
whereby people are fast at discriminating sounds or colors
that are physically close, but fall on different sides of a cul-
turally important perceptual boundary (Harnad, 1990).

A number of studies have found evidence for the facili-
tating effects of number boundaries. Holyoak (1978) in-
structed participants to judge which of two numbers was
closer to the boundary number 5. There was an inverse dis-
tance effect, with faster response times when the closer
number was near the boundary (2 vs. 6) than when it
was far (2 vs. 7). Other studies have found facilitating ef-
fects for place-value boundaries (e.g., Verguts & De Moor,
2005). Brysbaert (1995) found a boundary effect when par-
ticipants compared pairs of two-digit numbers. When both
numbers were on the same side of a decade boundary,
there was a standard distance effect (61 vs. 69 was faster
than 61 vs. 63). When the numbers crossed a decade
boundary, there was an inverse distance effect (58 vs. 60
was faster than 52 vs. 60). To take another example, Frank-
lin, Jonides, and Smith (2009) had participants judge
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whether triples of two-digit numbers were in ascending
order or not. The triples varied in whether they crossed a
tens boundary (18, 20, 21) or not (13, 15, 16), and also in
the distance between the smallest and largest members.
They found an inverse distance effect when the triples
crossed a tens boundary, with near-distance triples judged
faster than far-distance triples.

The current experiment did not find SNARC effects for po-
sitive or negative comparisons. Prior studies using integers
have found a SNARC effect for positive comparisons (Fischer
& Rottman, 2005; Shaki & Petrusic, 2005). However, these
studies did not include mixed comparisons or zero compar-
isons, and this may have enabled participants to adopt task-
dependent strategies. Also, SNARC effects are typically
attenuated in more mathematically experienced partici-
pants as would be the case with the graduate students in this
experiment (Dehaene et al., 1993; Fischer & Rottman, 2005).

3. Analog-x: the reflection model

The analog-x hypothesis proposes that the magnitude
representation of number has been restructured by the
integer symbol system. It is a ‘computational theory’ in
Marr’s (1982) analysis of cognitive theories: an abstract
specification that must be instantiated at the middle level,
by specifying the ‘data structures’ and ‘algorithms’ that
implement the restructuring claim. Here, we develop one
instantiation and show that it accounts for the results of
Experiment 1, including the critical inverse distance effect
for mixed comparisons, which falsifies the symbol+ and
analog+ hypotheses. The reflection model implements ana-
log-x using a spatial representation and continuous pro-
cessing (i.e., distance computations) defined on this
representation.® Integers are understood as points on men-
tal number lines, and critically, the negative number line is a
reflection of the natural number line. As a result of this
restructuring, the integer number line differs from the con-
ventional number line of mathematics.

This section develops the reflection model informally,
with respect to Fig. 3. It focuses on the model’s account
of the magnitude (distance and size) effects of Experiment
1, and its qualitative implementation of the restructuring
claim. The reader interested in further details of the model
- a formal specification, a sensitivity analysis of its param-
eters, and an account of the judgment effects - is directed
to Appendix A.

3.1. Model assumptions

The reflection model, shown in Fig. 3a, is defined by four
assumptions.

1. Mental number lines are psychophysically scaled (with
the degree of non-linearity specified by the o« parameter).

2. The negative number line is a reflection and compres-
sion of the natural number line (with the degree of
compression specified by the 8 parameter).

3 Below, we instantiate the analog-x computational theory in a second
model, one that adopts qualitatively different data structures and algo-
rithms at the middle level.

3. Comparing numbers requires projecting the corre-
sponding points onto an orthogonal axis to compute
the mathematical distance between them.

4. Comparison time is inversely proportional to mathe-
matical distance.

Assumption (1) is inherited from prior research on
mental number lines (Banks & Hill, 1974; Curtis & Fox,
1969; Dehaene & Mehler, 1992). Assumptions (3) and (4)
are inherited from prior research on making decisions
about numbers (Moyer & Landauer, 1967; Shepard, Kilpat-
ric, & Cunningham, 1975). Assumption (2) is the critical
new addition. It specifies how the natural number line is
restructured to form the negative number line. (See
Appendix A.1 for a formalization of these assumptions.)

3.2. Empirical evaluation

We evaluated the reflection model against the results of
Experiment 1, using grid search to estimate the values of
the two free parameters (« and p) that maximized the cor-
relation between human and model comparison times
computed across all stimuli. The model provides a good
quantitative account of the data (r=0.94, p <.001). (See
Appendix A.2 for a sensitivity analysis indicating that a re-
duced model with just the g parameter fits the data as well
as the full model.)

The reflection model also provides a good qualitative
account of the distance and size effects found in Experi-
ment 1 (Fig. 3a). It predicts that negative comparisons
are slower than positive comparisons because the negative
number line is compressed, and therefore negative magni-
tudes are less discriminable. It predicts that mixed com-
parisons are faster than positive comparisons because
distances are greater when comparing across number lines
than within a number line. The model predicts distance
and size effects for positive comparisons and negative
comparisons because the natural and negative number
lines are psychophysically scaled. Critically, it predicts an
inverse distance effect for mixed comparisons because of
the reflective organization of the natural and negative
number lines. Finally, the model predicts an inverse dis-
tance effect for zero-negative comparisons, again because
of the reflective organization of the number lines.

The reflection model makes two incorrect predictions
regarding the magnitude effects, both involving zero. First,
it predicts that zero comparisons are faster than positive
comparisons (because zero is the most extreme point of
the natural number line, and therefore comparisons to it
involve greater distances), whereas Experiment 1 found
no difference between these comparison types. Second, it
predicts a standard distance effect for zero-positive com-
parisons (because zero and positive numbers belong to
the same number line), which was not observed in Exper-
iment 1, although the trend was in the right direction. The
model is not alone in these failings; numerous studies have
found that zero behaves differently from other numbers
(Brysbaert, 1995; Dehaene & Mehler, 1992; Nuerk, Iversen,
& Willmes, 2004; Parkman, 1971). We return to the mental
representation of zero below, in Section 6. (See Appendix
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line.

A.3 for the model’s account of the semantic congruence
effect.)

3.3. Restructuring of spatial representations

The analog-x hypothesis proposes that mastering a new
symbol system restructures existing representations to en-
code the unique properties of the symbol system. The
reflection model defines an integer representation that in-
cludes more structure than the natural number represen-
tation, structure that is unique to the integer symbol
system. It implies a reflected integer number line, as can
be seen by projecting all points (corresponding to all num-
bers) onto a single dimension (Fig. 3b). Topologically, the
reflected integer number line can be viewed as the product
of “cutting” the conventional integer number line just be-
low zero and “inverting” the natural and negative number
lines (Fig. 3c). This psychological ordering of the integers
differs from the conventional mathematical ordering in
that the negative numbers reside beyond +o0o.?

One unique property of the integer symbol system is
that zero is a boundary between positive and negative
numbers. The reflection model encodes the boundary spa-
tially by adjoining the negative number line to the +oo pole
of the natural number line rather than the zero pole. This
has the effect of magnifying the distance between negative

4 Interestingly, the reflection model’s placement of the negative numbers
beyond +oo is consistent with Euler’s (1755/2000) proposal “that negative
numbers might sometimes be considered. .. more than infinity” (p. 57), i.e.,
that negative numbers are greater than positive numbers.

and positive numbers close to zero. Another unique prop-
erty is the additive inverse axiom: For every integer x,
there exists an integer —x such that x + (—x) = 0.° The model
also encodes this property spatially, using symmetry. Inte-
gers are vertically aligned with their additive inverses, as
shown in Fig. 3a.

The reflection model implements the analog-x hypothe-
sis using a spatial representation, and encodes the unique
properties of the integer symbol system using spatial
transformations such as cutting and reflecting. The model
makes the novel prediction that people incorporate sym-
metry into their integer representations, and should there-
fore be sensitive to symmetry when performing tasks other
than comparison. We return to this prediction below, in
Section 6.

4. Experiment 2

The analog-x hypothesis and its instantiation in the
reflection model critically depend on the inverse distance
effect found for mixed comparisons in Experiment 1 (cf.
Krajcsi & Igacs, 2010). However, Tzelgov et al. (2009) found
no effect of distance for mixed comparisons. Given the
discrepant findings, it is important to replicate the inverse

5 This is the critical difference between the natural numbers and the
integers. The natural numbers coupled with the addition operation satisfy
the associativity, identity, and commutativity axioms, and therefore have
the structure of a commutative monoid. The integers coupled with the
addition operation additionally satisfy the inverse axiom, and therefore
have the structure of a commutative group.
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effect and generalize it to a different population and differ-
ent experimental design. Experiment 2 repeated Experi-
ment 1 with two main differences. First, the participants
were drawn from a 2-year community college instead of
graduate school. Second, the distance factor varied para-
metrically instead of being blocked into near and far levels.

4.1. Method

4.1.1. Participants

Fifty-five community college students (25 female; 5
left-handed) participated in the experiment for course
credit. All reported normal or corrected-to-normal vision.

4.1.2. Stimuli and design

As in Experiment 1, there were three within-subjects
factors: comparison type, distance, and predicate. The ma-
jor difference was that comparison distance was varied
parametrically. We constructed a matrix containing all
possible comparisons of one-digit integers with distances
ranging from 2 to 8. Because time constraints prohibited
participants from making all possible comparisons, we ran-
domly sampled 52 comparisons from the matrix for each
participant, subject to several constraints. Each of the se-
ven distances was sampled twice for each of the four com-
parison types, with two exceptions: For distance 8, there is
only one positive comparison (1 vs. 9) and one negative
comparison (—9 vs. —1), and therefore these cells of the
matrix contained only one comparison each. For distance
2, there is only one mixed comparison (1 vs. —1), and it
is symmetric, so this cell of the matrix was left empty. An-
other sampling constraint was that at each distance, the
mixed comparisons included one mixed-positive compari-
son and one mixed-negative comparison. Similarly, at each
distance, the zero comparisons included one zero-positive
comparison and one zero-negative comparison. The sam-
pling design covers a range of distances across the different
comparison types, but it provides too few data points for
evaluating the size effect. This trade-off was deemed
acceptable because size effects for positive and negative
comparisons have been consistently documented
(Experiment 1; Ganor-Stern & Tzelgov, 2008; Shaki &
Petrusic, 2005).

There were four experimental blocks. Each sampled
comparison appeared once in each experimental block.
Trials were randomly ordered within each block. The
left-right order and greater-lesser judgment were coun-
ter-balanced across blocks. Participants were randomly as-
signed to one of two predicate orders (> < > < and < >< >).

4.1.3. Procedure

The experiment was implemented in E-Prime running
on laptops with LCD displays measuring 35.75 cm diago-
nally. Responses were collected by pressing the “C” and
“M” keys. Participants completed practice blocks of eight
greater judgments and eight lesser judgments. Participants
then completed the four experimental blocks. Each block
began with seven unmarked practice trials before the re-
corded trials began.

Stimulus presentation was the same as Experiment 1
with the exception that there was no feedback. (This was

done in preparation for an fMRI experiment that did not
provide feedback.) Instead, a blank screen was presented
between trials for a randomly determined interval of
2000, 4000, or 6000 ms. Each block lasted approximately
7 min, and the overall experiment lasted approximately
35 min.

4.2. Results

Data were lost from one participant due to a computer
error. Another six participants were excluded because they
confused whether to make greater or lesser judgments on
at least one block. (Because there was no feedback, they
could not self-correct.) Response times outside the range
of 200-2000 ms were pruned (0.25%), as were response
times more than three standard deviations from each par-
ticipant’s mean (1.49%). The average error rate was low
(M =2.08%, SEM = 2.02%), and there was no speed-accuracy
trade off (r=0.549, p <.001, when correlating response
time and error rate across the 54 cells of the design).® All
analyses therefore used response times on correct trials.

To preview the critical result, Fig. 4a shows that partic-
ipants replicated the inverse distance effect for mixed
comparisons. Table 3 shows the distance, semantic congru-
ence, and SNARC effects for each comparison type.

4.2.1. Magnitude effects (distance effect)

A repeated measures MANOVA crossed comparison
type (positive, negative, mixed, zero) and predicate (great-
er, lesser). There was a main effect of comparison type
(F(3,45)=132.686, p <.001). Positive comparisons were
faster than negative comparisons (F(1,47)=291.715,
p<.001), slower than mixed comparisons (F(1,47)=
7.939, p=.007), and the same as zero comparisons
(p=.297). The effect of predicate is presented below when
considering the semantic congruence effect.

We used a regression approach to evaluate the distance
effects (Fig. 4b). The slope (beta weight) of regressing re-
sponse time on distance was computed for each comparison
type for each participant. Participants’ average slopes are
shownin Table 3, which also holds the results of t-tests com-
paring the average slopes against the null hypothesis of a
zero slope. There was a standard distance effect (negative
slope) for positive comparisons and for negative compari-
sons. These slopes were comparable (paired t(47) = 1.438,
p =.157). There was a reliable inverse distance effect (posi-
tive slope) for mixed comparisons. This result held at the
individual level, albeit marginally. Thirty-one of 48 partici-
pants exhibited an inverse distance effect for mixed com-
parisons (p =.059, binomial test). By comparison, 37
participants showed a standard distance effect for positive
comparisons (p <.001), and 36 showed a standard distance
effect for negative comparisons (p = .001). When partitioned
into mixed-positive and mixed-negative comparisons, there
was an inverse distance effect for mixed-negative compari-
sons, but no effect of distance for mixed-positive compari-
sons (Table 3).

6 For positive, negative, and zero comparisons: 7 distances x 2 predi-
cates = 14 cells each. For mixed comparisons, which included no compar-
isons of distance 2: 6 distances x 2 predicates = 12 cells.
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Fig. 4. Experiment 2 distance effect for positive, negative, and mixed comparisons expressed as (a) RTs and (b) slopes.

Table 3
Distance, size, semantic congruence, and SNARC effects for Experiment 2.
Distance effect Overall® Slope® t(47)¢ p Direction
Positive 697 (15) —7.33 (2.03 —3.596 .001 Standard
Negative 836 (18) -11.07 (1.82 —6.084 <.001 Standard
Mixed 676 (16) 5.34 (2.53 2.110 .040 Inverse
Mixed-positive 682 (19) 2.22 (3.44) 0.646 522
Mixed-negative 686 (17) 8.83 (3.10) 2.840 .007 Inverse
Zero 691 (16) —1.43 (1.49) —0.964 .340
Zero-positive 692 (18) —3.60 (1.93) -1.864 .069 (Standard)
Zero-negative 708 (19) 0.35 (1.92) 0.186 .853
Semantic congruence effect Greater Lesser t(47) p Direction
Negative 866 (19) 805 (20) —4.743 <.001 Inverse
Mixed 686 (18) 667 (16) -1.738 .089
Mixed-positive 671 (19) 679 (18) 0.592 .557
Mixed-negative 700 (18) 654 (15) —3.535 .001 Inverse
Zero 689 (16) 692 (17) 0.316 753
Zero-positive 673 (17) 693 (16) 1.625 .105
Zero-negative 706 (17) 694 (20) -0.737 465
SNARC effect Slope? t(47) p Direction
Positive 7.63 (6.05) 1.262 213
Negative 15.57 (7.29) 2.134 .038 Inverse
Positive and negative 0.633 (1.57) 0.402 .689

2 Measures are reported M (SEM).

b Average slope predicting RT from distance.
¢ Comparisons of slope vs. 0, lesser-greater.
d

Predicting RT (right hand-left hand) from the mean of each near-distance number pair. A negative slope indicates a standard SNARC effect and a

positive slope an inverse SNARC effect.

There was no distance effect for zero comparisons.
When zero comparisons were partitioned based on the
sign of the non-zero number, there was a marginal dis-
tance effect for zero-positive comparisons, but no effect
of distance for zero-negative comparisons. This was some-
what different than the pattern in Experiment 1, where
there was no effect for zero-positive comparisons, but a
marginal inverse distance effect for zero-negative
comparisons.

4.2.2. Judgment effects

4.2.2.1. Semantic congruence effect. Returning to the MANO-
VA of comparison type by predicate, there was no main ef-
fect of predicate (p=.559). Fig. 5a shows the reliable
predicate by comparison type interaction (F(1,45)=
26.912, p <.001). Table 3 breaks down the interaction in a

series of paired t-tests evaluating the effect of predicate
for each comparison type and subtype. There was a semantic
congruence effect for positive comparisons and an inverse
semantic congruence effect for negative comparisons.

Fig. 5b shows the semantic congruence effects for
mixed comparisons. A repeated measures MANOVA
crossed comparison type (mixed-positive, mixed-negative)
and predicate (greater, lesser). Neither main effect was
reliable (ps >.08), but as in Experiment 1 there was an
interaction (F(1,47)=17.931, p<.001). Breaking down
the interaction with paired t-tests, there was an inverse
semantic congruence effect for mixed-negative compari-
sons, but no effect of semantic congruence effect for
mixed-positive comparisons (Table 3).

For zero-comparisons, a repeated measures MANOVA
crossed comparison type (zero-positive, zero-negative)
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Fig. 5. Experiment 2 semantic congruence effect (a) for positive, negative, and mixed comparisons and (b) broken down for mixed-positive and mixed-

negative comparisons.

and predicate (greater, lesser). As with Experiment 1, there
was no main effect of predicate nor an interaction
(ps >.10). There was a main effect of comparison type
(F(1,47)=5.310, p = .026), with zero-positive comparisons
faster than zero-negative comparisons.

4.2.2.2. SNARC effect. Analyses of the SNARC effect focused
on positive and negative comparisons of near distance (2—
4), because the effect requires both numbers to be about
same size. Three SNARC effects were estimated for each
participant: one for positive comparisons alone, one for
negative comparisons alone, and one for positive and neg-
ative comparisons combined. Table 3 shows the results.
There was no SNARC effect for positive comparisons alone.
There was an inverse SNARC effect for negative compari-
sons alone, with faster right responses for small negative
numbers (—9 vs. —7) and faster left responses for large
negative numbers (-3 vs. —1), replicating Fischer and
Rottman (2005). There was no unified SNARC for both
comparison types combined. The finding of an inverse
SNARC effect for negative comparisons in Experiment 2
contrasts with the absence of SNARC effects in Experiment
1. We return to this in the Discussion.

4.3. Discussion

Experiment 2 replicated the inverse distance effect for
mixed comparisons observed in Experiment 1 while sam-
pling from a less-schooled population and using a para-
metric design. This finding is consistent with analog-x
and inconsistent with both symbol+ (which predicts no ef-
fect of distance) and analog+ (which predicts a standard
distance effect).

We can quantify the fit of the reflection model as in
Experiment 1. The correlation between model and human
comparison times was 1(92) = 0.91, p < .001. (See Appendix
A.2 for a sensitivity analysis showing that a reduced model
with just the g parameter fits the data as well as the full
model.) The model again provides a good qualitative ac-
count of the magnitude effects. It correctly predicts that
positive comparisons are faster than negative comparisons
and slower than mixed comparisons; that positive compar-

isons and negative comparisons show distance and size ef-
fects; and that mixed comparisons show an inverse
distance effect. The model’s incorrect predictions again
concern zero comparisons. The model predicts that zero
comparisons are faster than positive comparisons, but
Experiment 2 found no difference. The model also predicts
that zero-negative comparisons should show an inverse
distance effect whereas Experiment 2 found no effect.
These mispredictions, which parallel those of Experiment
1, represent limitations of the reflection model. We return
to them below, in Section 6.

Experiments 1 and 2 found evidence that adults have
access to an analog-x representation. Experiment 3 evalu-
ated the developmental claim of the restructuring hypoth-
esis: Children initially adopt a symbol+ representation,
complementing their existing magnitude representation
of natural numbers with the symbolic rules of the new
integer symbol system. Over time, repeated application of
the rules transforms the magnitude representation to
encode the unique properties of the symbol system. The
participants in Experiment 3 were children who had
learned the integers, but had relatively little experience
with them. The prediction is that they should rely exclu-
sively on a symbol+ representation, and show no evidence
of an analog-x (or analog+) representation.

5. Experiment 3

Children in the United States are introduced to negative
numbers around 4th grade. At this point, they already have
a magnitude representation of natural numbers (Duncan &
McFarland, 1980; Sekuler & Mierkiewicz, 1977). They learn
about negative numbers through informal semantic models
(Schwarz, Kohn, & Resnick, 1993/1994). In “annihilation”
semantics, they are told that natural numbers and negative
numbers can be represented as sets of positively and nega-
tively charged particles, respectively, and there is a rule for
canceling particles of opposite charges (Hayes & Stacey,
1999; Liebeck, 1990). In “extended number line” semantics,
they are told that the number line can be extended to the left
of zero, and that natural numbers correspond to rightward
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movements and negative numbers to leftward movements
(Hativa & Cohen, 1995; Moreno & Mayer, 1999).”

Informal semantic models generalize poorly to arithme-
tic operations besides addition, such as subtracting a neg-
ative number from another integer (Hayes & Stacey, 1999;
Liebeck, 1990; Moreno & Mayer, 1999). For this reason,
instruction quickly transitions to the rules of the integer
symbol system (Thompson & Dreyfus, 1988). Children
learn rules for comparing integers such as “positives are
greater than negatives,” and rules for integer arithmetic
such as “a negative times a negative is a positive.”®

Experiment 3 investigates whether sixth-grade children
(12 year olds), who have had a couple of years of experi-
ence with negative numbers, use a symbol+, analog+, or
analog-x representation. The restructuring hypothesis pre-
dicts that they have not had sufficient experience to
restructure their magnitude representation of natural
numbers, and will therefore use a symbol+ representation
(Prather & Alibali, 2008). In particular, when making mixed
comparisons, they will invoke the rule “positives are great-
er than negatives,” and will therefore show no effect of dis-
tance. Similarly, when making zero comparisons, they will
invoke rules such as “positives are greater than zero,” and
will therefore not show an effect of distance.

5.1. Method

5.1.1. Participants

Thirty-six children (M =11.89 years, SD =0.34; 17 fe-
male; 3 left-handed) participated. They were in an acceler-
ated sixth-grade mathematics course covering the first half
of pre-algebra. All reported normal or corrected-to-normal
vision.

5.1.2. Stimuli and design

The design was similar to Experiment 1 with two
changes. To reduce participant confusion, the predicate fac-
tor was between-subjects: Half the participants made only
greater judgments, and half made only lesser judgments.
The second change was to reduce the number of stimuli by
half. There were four experimental blocks, each containing
44 stimuli. Each comparison appeared once in each block,
counter-balanced across blocks for left-right order.

5.1.3. Procedure

The apparatus was the same as in Experiment 2. The
procedure was the same as Experiment 1 with the excep-
tion that participants only completed one practice block
with their assigned predicate (greater or lesser), and exper-
imental blocks did not begin with unmarked practice trials.
Each block lasted approximately 4 min, and the overall

7 Recent studies of “operational momentum” effects during arithmetic
are delineating the connection between number processing on one hand
and pointing movements (Pinhas & Fischer, 2008) and eye movements
(Knops, Thirion, Hubbard, Michel, & Dehaene, 2009) on the other.

8 Children are not alone in requiring symbol systems to move beyond
informal semantics. As Gauss wrote in a letter to Bessell, “when the
definition, from which we proceed, ceases to have a sense, one should not
ask, strictly speaking, what has to be assumed?, but what is convenient to
assume? so that I can always remain consistent. Thus, for example, the
product of minus by minus” (cited on p. 256 of Crowley & Dunn, 1985).

experiment lasted approximately 20 min, fitting within
the constraints of the school day.

5.2. Results

Fig. 6a previews the main result. There was no effect of
distance for mixed comparisons, corroborating the devel-
opmental prediction of the restructuring hypothesis.

Responses outside the range of 200-2000 ms were
pruned (0.21%), as were response times more than three
standard deviations from each participant’s mean (1.42%).
There was no speed-accuracy trade-off (r=0.763,
p =.001, between response time and error rate across the
16 cells of the design). The error rate was low (M = 3.79%,
SEM =1.91%). Analyses therefore focused on response
times on correct trials.

5.2.1. Magnitude effects

5.2.1.1. Distance effect. We performed a MANOVA on re-
peated measures comparison type (positive, negative,
mixed, zero) and distance (near, far), and between-subjects
factor predicate (greater, lesser). Table 4 shows the associ-
ated means and standard errors. Predicate effects are de-
scribed below, in the section on judgment effects. There
was a main effect of comparison type (F(3,32)=41.036,
p <.001), with positive comparisons faster than negative
comparisons (F(1,34)=77.506, p<.001), slower than
mixed comparisons (F(1,34)=9.267, p =.004), and slower
than zero comparisons (F(1,34)=5.494, p=.025). There
was a main effect of distance (F(1,34)=14.483, p=.001),
with far comparisons (M = 647, SEM = 15) faster than near
comparisons (M = 663, SEM = 15). There was an interaction
between comparison type and distance (F(3,32)=4.802,
p =.007). Table 4 shows the results of paired t-tests break-
ing down the interaction. There was a distance effect for
positive comparisons and one for negative comparisons,
and they were comparable (p =.984).

Critically, there was no effect of distance for mixed com-
parisons, consistent with symbol+. A repeated measures
MANOVA on comparison type (mixed-positive, mixed-
negative) and distance (near, far) found no main effects of
comparison type or distance (ps > .24), but there was a reli-
able interaction (F(1,35)=4.825, p=.035). However, this
interaction was not strong; paired t-tests found a marginal
distance effect for mixed-negative comparisons, and no ef-
fect of distance for mixed-positive comparisons (Table 4).

There was no effect of distance for zero comparisons. A
repeated measure MANOVA on comparison type
(zero-positive, zero-negative) and distance (near, far)
found no reliable effects (ps >.22).

5.2.1.2. Size effect. Fig. 6b and Table 4 show the size effects
for positive and negative near-distance comparisons. A re-
peated measures MANOVA crossing comparison type (po-
sitive, negative) and size (small, large) found a main
effect of comparison type (F(1,35) = 29.764, p <.001), with
positive comparisons faster than negative comparisons.
There was also a main effect of size (F(1,35)=69.107,
p <.001), with small comparisons faster than large com-
parisons. The size effect was comparable for both compar-
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Fig. 6. Experiment 3 magnitude effects. (a) Distance effect for positive, negative, and mixed comparisons. (b) Size effect for positive and negative

comparisons.
Table 4
Distance, size, semantic congruence, and SNARC effects for Experiment 3.
Distance effect Overall® Far Near t(35)° p Direction
Positive 649 (15) 634 (15) 663 (16) 4376 <.001 Standard
Negative 725 (17) 711 (16) 739 (18) 3.848 <.001 Standard
Mixed 616 (17) 616 (18) 616 (16) —0.048 .962
Mixed-positive 619 (19) 627 (20) 612 (19) -1.564 127
Mixed-negative 611 (16) 605 (17) 617 (15) 1.767 .086 (Standard)
Zero 631 (16) 627 (17) 634 (17) 0.875 .388
Zero-positive 625 (16) 617 (17) 633 (17) 1.521 137
Zero-negative 637 (19) 638 (20) 636 (20) —-0.150 .882
Size effect Near/small Near/large t(35) p Direction
Positive 632 (15) 695 (18) 7.096 <.001 Standard
Negative 710 (17) 770 (20) 5.696 <.001 Standard
Semantic congruence effect Greater Lesser t(34) p Direction
Positive 619 (22) 678 (22) 1.885 .068 (Standard)
Negative 753 (24) 698 (24) -1.609 117
Mixed 635 (24) 596 (24) -1.153 257
Mixed-positive 636 (27) 606 (27) -0.765 299
Mixed-negative 635 (22) 589 (22) -1.463 304
Zero 631 (23) 630 (23) —-0.021 .983
Zero-positive 605 (23) 645 (23) 1.214 233
Zero-negative 655 (27) 619 (27) -0.915 367
SNARC effect Slope®© t(35) p Direction
Positive —1.40 (3.42) -0.410 .684
Negative 3.59 (3.53) 1.018 316
Positive and negative 6.74 (1.87) 3.604 .001 Inverse

4 Measures are reported M (SEM).
b Comparisons of nearfar, large-small, lesser-greater, slope vs. 0.

¢ Predicting RT (right hand-left hand) from the mean of each near-distance number pair. A negative slope indicates a standard SNARC effect and a

positive slope an inverse SNARC effect.

ison types as indicated by the absence of an interaction
(p=.763).

5.2.2. Judgment effects

5.2.2.1. Semantic congruence effect. To evaluate the seman-
tic congruence effect, we return to the distance effect
MANOVA reported above. There was no main effect of
predicate (p =.780). Fig. 7 shows the only reliable interac-
tion, which was between comparison type and predicate
(F(3,32)=15.311, p <.001). Table 4 breaks down the inter-
action in a series of independent t-tests (recall that predi-
cate is a between-subjects factor in this experiment)

evaluating the effect of predicate for each comparison type
and subtype. Importantly, the only semantic congruence
effect was a marginal effect for positive comparisons, con-
sistent with symbol+.

5.2.2.2. SNARC effect. SNARC effects were analyzed as in
Experiment 1. Table 4 shows the results. There was no ef-
fect for positive comparisons alone nor for negative com-
parisons alone. However, there was an inverse SNARC
effect across both comparison types combined, with left
responses faster for positive comparisons and right
responses faster for negative comparisons.
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5.3. Discussion

Experiment 3 evaluated the prediction that children
who have less experience with integers will not have
restructured their magnitude representation, and will
therefore understand negative numbers by using a combi-
nation of a natural number line representation and the
rules of the integer symbol system. The results corroborate
this prediction. The sixth graders showed distance effects
for positive and negative comparisons. However, for the
diagnostic mixed comparisons, they did not show the in-
verse distance effect predicted by analog-x and observed
for adults in Experiments 1 and 2. Nor did they show the
standard distance effect predicted by analog+. Instead,
they showed no effect of distance, consistent with the
use of rules (“positives are greater than negatives”), and
thus with symbol+.

This null result, though predicted a priori by the restruc-
turing hypothesis, must be interpreted with caution. It
might, for example, simply reflect a lack of power. There
are three reasons to believe that this is not the case. First,
the semantic congruence effects also pattern according to
symbol+, as predicted by the restructuring hypothesis.
Symbol+ proposes that only positive numbers have magni-
tude representations. Consistent with this proposal, there
was a marginal semantic congruence effect for positive
comparisons, but no effect for negative and mixed compar-
isons. This suggests that the children lacked a separate
magnitude representation of negative numbers to associ-
ate with the lesser predicate. The second reason comes
from a direct comparison of the distance effects for mixed
comparisons in Experiments 1 and 3, which used the same
stimuli and similar designs. A 2 x 2 MANOVA crossing be-
tween-subjects factor age-group (adults, children) and
within-subjects factor distance (far, near) found an age-
group by distance interaction (F(1,55)=9.613, p=.003),
confirming that the effect of distance for mixed compari-
sons was statistically different for adults vs. children.
Third, we have replicated the predicted null effect of dis-
tance for mixed comparisons observed in Experiment 3
in a separate study of 54 middle and secondary school stu-
dents from a low-achieving urban school district in the
United States (Varma, Harris, Schwartz, & Martin, 2009).
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Fig. 7. Experiment 3 semantic congruence effect for positive, negative,
and mixed comparisons.

(The other results of this study were also consistent with
those of Experiment 3, including distance effects for posi-
tive and negative comparisons, and a semantic congruence
effect for positive comparisons but none for negative and
mixed comparisons.)

6. General discussion

As part of the larger question of how people come to
understand abstract mathematical concepts, three experi-
ments investigated how people represent the integers,
including negative numbers and zero. The symbol+
hypothesis proposes that people supplement their magni-
tude representation of natural numbers with the rules of
the integer symbol system. The analog+ hypothesis pro-
poses that the mental number line is extended “to the left”
to include negative numbers and zero per the conventional
number line of mathematics. The existing literature is
mixed, with some findings supporting symbol+, others
analog+, and still others inconsistent with both
hypotheses.

The current research investigated whether adults have
additionally developed a restructured analog-x representa-
tion. The critical supporting finding was the inverse dis-
tance effect for mixed comparisons across the zero
boundary, with near comparisons (—1 vs. 2) faster than
far comparisons (—1 vs. 7). This effect was present whether
distance was blocked or varied parametrically, and it was
found in both highly educated graduate students and less
educated junior college students. (The other magnitude
and judgment effects in Experiments 1 and 2 were also
consistent with analog-x.) Analog-x was instantiated in a
formal model using spatial number line representations
and continuous processing. The model encodes the addi-
tive inverse property of the integer symbol system by pos-
iting that the negative number line is a reflection of the
positive number line. It provides a good quantitative and
qualitative account of the adult data in Experiments 1
and 2, although it did not provide a good account of the
representation of zero.

Experiment 3 evaluated the restructuring hypothesis,
which makes a developmental claim: When first learning
the integer symbol system, children initially adopt a sym-
bol+ representation, but over time, repeated application of
symbolic rules restructures the magnitude representation
of natural numbers. As predicted, sixth-grade children
did not show an effect of distance for mixed comparisons,
even though they were as fast and accurate as adults. This
finding is consistent with a symbol+ representation (as
were the other observed magnitude and judgment effects).

6.1. The analog-x hypothesis

The analog-x hypothesis proposes that people come to
understand abstract mathematical concepts by developing
an analog representation of their important symbolic prop-
erties. In some cases, analog representations have a near
one-to-one correspondence with perceptual experiences.
For example, people represent the geometry of the rotation
of physical objects much like they perceive the rotation it-
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self (Shepard & Metzler, 1971). For the case of natural
numbers, people appear to utilize a mental analog of the
perceptible number line (Moyer & Landauer, 1967). fMRI
studies indicate that the intra-parietal sulcus (IPS) is a neu-
ral correlate of this mental number line. The IPS shows a
“neural distance effect,” with greater activation for difficult
near comparisons than for easy far comparisons (Pinel,
Dehaene, Riviére, & Le Bihan, 2001). Furthermore, fMRI
studies suggest that the IPS represents number magnitudes
and perceptual magnitudes similarly, because it also shows
a neural distance effect when comparing the physical size
and luminance of symbols (Pinel, Piazza, Le Bihan, &
Dehaene, 2004) and the numerosity of dot clouds (Piazza,
Izard, Pinel, Le Bihan, & Dehaene, 2004).

Analog-x differs from other accounts of analog repre-
sentation in proposing that people can also develop analog
representations that do not directly correspond to percep-
tual-motor experiences. This is critical for making sense of
abstract mathematical concepts that do not have ready
perceptual-motor referents. For the case of the integers,
the reflection model proposes that people develop an ana-
log-x representation where the positive and negative num-
ber lines are symmetrically organized. This symmetry
captures the additive inverse property unique to the inte-
ger symbol system.

The primary evidence that people incorporate symme-
try comes from the inverse distance effect for mixed com-
parisons. To gain further evidence for the symmetry
proposal of analog-x, it is important to consider other
experimental paradigms besides number comparison. Re-
cent studies have directly examined the symmetry pro-
posal using a number bisection task. Tsang and Schwartz
(2009) showed adult participants pairs of integers and
had them name the midpoint. They found evidence of a
symmetry tuning curve: Participants were fastest for per-
fectly symmetric pairs (—3 and 3), and faster for more sym-
metric pairs (—7 and 9) than less symmetric pairs (—6 and
10).° In an fMRI study using the same task, Tsang,
Rosenberg-Lee, Blair, Schwartz, and Menon (2010) found
that more symmetric pairs elicited greater activation in left
lateral occipital cortex, a region associated with visual sym-
metry processing (Sasaki, Vanduffel, Knutsen, Tyler, &
Tootell, 2005). Thus, the new symmetry predictions gener-
ated by analog-x are finding empirical support.

6.2. The restructuring hypothesis

Taken together, Experiments 1 and 3 constituted a
cross-sectional comparison. Their findings indicated that
symbol+ precedes analog-x in development. Children used
rules to judge that positives are greater than negatives,
that positives are greater than zero, and so forth. They
exhibited no magnitude effects when using these rules.
By contrast, adults did not use rules, as evidenced by the
finding of an inverse distance effect for mixed compari-
sons. This supports the restructuring hypothesis, which
proposes that through experience using symbol systems

9 Although accuracy data were not reported, there was no evidence of a
speed-accuracy trade-off (J.M. Tsang, personal communication, September
28, 2010).

(i.e., a symbol+ representation) people develop an analog-
X representation that organizes positive and negative mag-
nitudes symmetrically.

Developmental neuroscience studies have found inde-
pendent evidence for a symbolic-to-analog shift in number
understanding. Ansari, Garcia, Lucas, Hamon, and Dhital
(2005) had 10-year-olds and adults compare natural num-
bers. Children showed a neural distance effect in inferior
frontal gyrus, which is a neural correlate of controlled rule
processing (Miller & Cohen, 2001). By contrast, adults
showed a neural distance effect in IPS, which is associated
with magnitude processing. Rivera, Reiss, Eckert,and Menon
(2005) found evidence for a developmental shift using a
symbolic arithmetic task. Through adolescence, activation
in prefrontal regions associated with controlled processing
decreased, whereas activation in posterior regions associ-
ated with visuospatial processing (i.e., IPS) increased. An
interesting question for future research is whether IPS is
the sole neural correlate of negative magnitudes, or whether
it functions as part of a large-scale cortical network (Luria,
1966; Mesulam, 1990; Just & Varma, 2007).

6.3. Symbolic-magnitude model

Analog-x is a computational theory, specifying the ab-
stract characteristics of integer understanding — symmetry
and sensitivity to boundaries - but not their implementa-
tion at the level of data structures and algorithms (Marr,
1982). The reflection model instantiates analog-x using
spatial representations (mental number lines) and contin-
uous processing (distance computations). It offers a suc-
cessful account of adult performance and generates novel
theoretical predictions, for example regarding performance
on bisection tasks.

Here, we propose a second instantiation of analog-x in a
symbolic-magnitude model of integer understanding. The
model serves two purposes. First, it offers an explanation
of how symbol systems can restructure analog representa-
tions to incorporate additional structure. This is important
because some researchers claim that such transformations
are impossible because symbolic representations and ana-
log magnitude representations are fundamentally incom-
mensurable (e.g., Harnad, 1990). Second, the model offers
a different implementation of analog-x at the level of data
structures and algorithms, using featural representations
of number magnitude (Lewis & Varma, 2010; Zorzi &
Butterworth, 1999) and similarity-based processing.

This section describes the symbolic-magnitude model
informally, with reference to Fig. 8. It evaluates its quanti-
tative and qualitative fit to the results of Experiments 1
and 2, and puts forth a concatenative account of how sym-
bolic rules restructure magnitude representations. The
reader interested in a formalization of the model, a sensi-
tivity analysis of its parameters, and its application to judg-
ment effects is directed to Appendix B.

6.3.1. Model description

The symbolic-magnitude model for the integers —9
through 9 is shown in Fig. 8a. (See Appendix B.1 for the
mathematical formalization.)
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(a) Symbolic-Magnitude Model
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Fig. 8. (a) Symbolic-magnitude model. (b) Complementary integer number line. (c¢) Formation of the complementary integer number line via restructuring

of the conventional integer number line.

Natural numbers are represented as vectors of features,
as shown in the top half of Fig. 8a. Feature s is the sign fea-
ture; its value is O for all natural numbers. Features s;
through sq encode the magnitude of a number. Their values
are psychophysically scaled, with the non-linearity of the
scaling specified by the o parameter.

The critical proposal of analog-x is that negative num-
ber representations are symmetric to natural number rep-
resentations. The reflection model implements this
proposal using reflected number lines. By contrast, the
symbolic-magnitude model defines the feature values of
negative and natural number representations to be comple-
mentary, as shown in the bottom half of Fig. 8a. This is true
of the sign feature sq, which is 1 for negative numbers. This
is also true of the magnitude features s; through sg, where
the magnitude encoding of a negative number is the com-
plement of the magnitude encoding of the positive number
that is its additive inverse.'® For example, the encoding of
—1 has a zero value for feature s; and non-zero values for
all other features, whereas the encoding of 1, its additive in-
verse, has a non-zero value for feature s; and zero values for
all other features. In addition, the feature values of negative
magnitudes are compressed relative to those of positive
magnitudes, as specified by the  parameter.

10 The complementary number representations of the symbolic-magni-
tude model are analogous to those of 2’s complement, the dominant binary
code for signed numbers.

Numbers are compared using the similarity-based pro-
cessing that is conventional for featural representations
(Nosofsky, 1984; Shepard, 1987). This entails two steps.
First, the difference between two number representations
is computed by summing the differences of their feature
values. Second, the similarity of the number representa-
tions is computed as a decreasing function of their differ-
ence: the less their difference, the greater their similarity.
The time to compare the number representations is an
increasing function of their similarity: the greater their
similarity, the greater (i.e., slower) their comparison time.

Critically, the model predicts an inverse distance effect
for mixed comparisons. For example, as Fig. 8a shows,
the featural difference between the representations of —1
and 2 is greater than the featural difference between the
representations of —1 and 7. Thus, the similarity of the
near-distance pair is less than the similarity of the far-dis-
tance pair, and consequently the near-distance pair is com-
pared faster than the far-distance pair.

6.3.2. Empirical evaluation

The symbolic-magnitude model provides a good quan-
titative account of the adult data. Using grid search to esti-
mate the best-fitting values of the two free parameters («
and p), the correlation between model and human compar-
ison times was r=0.96 (p <.001) for Experiment 1 and
r=0.92 (p <.001) for Experiment 2. (See Appendix B.2 for
a sensitivity analysis showing that a reduced model with
just the B parameter yields comparable fits.)
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The model also provides a good qualitative account of
the distance and size effects observed in Experiments 1
and 2. It predicts that negative comparisons are slower
than positive comparisons because the feature values of
negative number representations are compressed (as spec-
ified by p), decreasing the featural difference between
them, and thus increasing comparison time. It predicts that
mixed comparisons are faster than positive comparisons
because the feature values of positive and negative number
representations are complementary, increasing the featur-
al difference between them, and thus decreasing compari-
son time. It predicts that positive comparisons and zero
comparisons are comparable because the zero representa-
tion is parametrically in line with positive number repre-
sentations. The model predicts distance and size effects
for positive comparisons and negative comparisons be-
cause of the psychophysical scaling of feature values.
And, as described above, it predicts an inverse distance ef-
fect for mixed comparisons because the complementary
coding of positive and negative numbers increases the fea-
tural difference between numbers close to the zero bound-
ary, thus decreasing comparison time.

The symbolic-magnitude model provides a better qual-
itative account of the zero comparison data than the reflec-
tion model. It predicts a distance effect for zero-positive
comparisons because natural number representations are
psychophysically scaled. Supporting this prediction, there
was a marginal distance effect in Experiment 2, and a trend
for such an effect in Experiment 1. The model predicts an
inverse distance effect for zero-negative comparisons be-
cause zero is a natural number and natural numbers and
negative numbers are complementarily coded. Supporting
this prediction, there was a marginal inverse distance ef-
fect in Experiment 2. The failure to find an effect of dis-
tance in Experiment 1 is inconsistent with both the
model and the results of Experiment 2, and therefore diffi-
cult to interpret. (See Appendix B.3 for the model’s account
of the semantic congruence effect.)

6.3.3. Concatenative restructuring of featural representations

The symbolic-magnitude model specifies a restructured
integer representation (Fig. 8b) that can be viewed as the
product of cutting the conventional integer number line
just below zero and inverting the negative number line
(Fig. 8c). This psychological ordering of the integers repre-
sents a restructuring of the conventional mathematical
ordering.

The model’s featural representations provide a basis for
understanding the developmental process by which a sym-
bol+ representation is restructured into an analog-x repre-
sentation. Children initially possess the natural number
representations shown in the top half of Fig. 8a. Features
s; through sy are interpreted as a magnitude representation
and processed via similarity-based processing. When
learning the integer symbol system, children add the sg
feature denoting the sign of a number. This feature is inter-
preted as a symbolic representation (e.g., the symbolic rule
‘“positives are greater than negatives” can be operational-
ized as “if so = 0 for x and sg = 1 for y, then x > y”). The result
is a symbol+ representation, with features s; through sy

interpreted as a magnitude and feature sy interpreted
symbolically.

Over development, children begin to articulate separate
negative number representations, as shown in the bottom
half of Fig. 8a. The symmetry of these representations fol-
lows from repeated application of the additive inverse
property when solving informal problems (e.g., paying $3
reduces a $3 debt to $0) and formal problems (e.g., elimi-
nating terms in algebraic equations). Once children possess
both natural number and negative number representa-
tions, the magnitude and symbolic features cease to be
interpreted separately and come to be interpreted inte-
grally, both processed through computing featural differ-
ences and representational similarities. (Of course, if the
context calls for it, people can still interpret the sq feature
symbolically, yielding behaviors consistent with symbol+.)

This concatenative account of the restructuring process
is possible because the symbolic-magnitude model pro-
poses a common number representation - vectors of fea-
ture values - throughout development. What changes is
how this representation is interpreted. Initially, some fea-
tures are processed via similarity and others symbolically,
and the representation is therefore symbol+. Later, when
all features have come to be processed via similarity, the
representation becomes analog-x.

6.4. Future research

The current experiments and models suggest a number
of directions for future research. Developmental studies
are necessary to better evaluate the restructuring hypoth-
esis. Cognitive neuroimaging studies are necessary to
understand the neural bases of the analog-x representation
in adults. Developmental neuroimaging studies are neces-
sary to investigate the shifting cortical networks that
underlie the proposed representational restructuring. In
advancing our empirical understanding of the basic phe-
nomena, these studies will also support evaluation of the
predictions of the reflection and symbolic-magnitude
models.

In this section, we sketch two more speculative direc-
tions for future research. The first is to better understand
the type of experiences with integers that drive restructur-
ing. We hypothesize that instruction that emphasizes the
additive inverse property through experiences with sym-
metry about zero will accelerate the development of ana-
log-x (Schwartz, Blair, & Tsang, in press). Such instruction
is not currently the norm in mathematics classrooms, with
most approaches emphasizing annihilation or counting
forward and backward along the number line. A related
question is whether accelerating the development of ana-
log-x for integers better prepares people to learn new,
but related, abstract mathematical concepts. One possibil-
ity is that analog-x might facilitate algebraic thinking,
which requires symmetric canceling and equation balanc-
ing to maintain equality. Or conversely, it might be the
symbolic experiences in algebra that drive the shift from
symbol+ to analog-x.

A second goal for future research is to understand the
generality of the abstract-to-concrete shift proposed here.
The integers are one instance of an abstract mathematical
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concept. It is not difficult to imagine other instances, where
initially abstract concepts become embodied in trans-
formed analog magnitude representations. For example,
“instantaneous acceleration” is an abstract physical con-
cept. It is intuitive to physicists, but at one point in their
training, it probably was not. A good deal of experience
was likely necessary before the rate of change of a rate of
change occurring in an interval of duration zero became
intuitive. The restructuring hypothesis proposes that this
was the result of sustained mathematical experiences,
most likely with calculus. Through practice with mathe-
matical symbol systems, budding physicists come to con-
struct structured analog magnitude representations of
movement that make abstract concepts like instantaneous
acceleration concrete.

The restructuring hypothesis proposes connecting sym-
bolic representations and processes with analog represen-
tations, so those analog representations can be
transformed to encode the symbolic properties. Therefore,
analog-x predicts that neither pure “symbol pushing” nor
pure “hands-on” experiences will be sufficient for develop-
ing an analog-x representation. Determining the right bal-
ance is an important educational question which does not
naturally fall out of the symbolic or embodied traditions of
explaining mathematical competence.

6.5. Conclusion

It was said of the mathematician Ramanujan that
“every positive integer was one of his personal friends”
(Newman, 1956, p. 375). But mathematicians are not the
only ones for whom mathematical concepts are alive - this
is true to some degree for all who are mathematically
literate. We have argued that repeated application of sym-
bolic rules transforms magnitude representations, adding
structure to them, and we have offered two models of
the outcome. The transformed representations support an
intuitive understanding of abstract mathematical concepts.
They explain how mathematical symbol systems give
ready access to the imperceptible.
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Appendix A. The reflection model

This appendix formalizes the reflection model, quanti-
fies its fit to the results of Experiments 1 and 2, presents
a sensitivity analysis of its free parameters, and summa-
rizes its account of judgment effects.

A.1. Model formalization

The first assumption of the reflection model is that
mental number lines are psychophysically scaled. We for-
malize it by following the psychophysical theory of Stevens
(1970), which specifies power function scaling: Psycholog-
ical (number) magnitudes m(x) are a power function of
physical magnitudes x.

mx)=(x+1)"x>0 (1)

The o € (0,1] parameter specifies the curvature of mental
number lines. Power function scaling of mental number
lines has been proposed by a number of researchers (Banks
& Hill, 1974; Curtis & Fox, 1969; Dehaene & Mehler, 1992).

The second assumption is that the negative magnitudes
s(x) are reflections and compressions of natural number
magnitudes.

>
s(x):{ m(x) x=0 @)
—pm(|x]) x<0

The pe(0,1] parameter specifies the degree of
compression.

The third assumption is that number magnitudes are
compared by first computing the mathematical distance
between them.

d(x,y) = s(x) = s(y) 3)

The fourth assumption is that comparison time is inversely
proportional to this distance.

RT(x,y) oc —log(d(x,y)) (4)

These equations trace back to classic theories of number
comparison (Moyer & Landauer, 1967; Shepard et al.,
1975), and ultimately to classic accounts of decision mak-
ing (Welford, 1960).

A.2. Empirical evaluation and sensitivity analysis

The reflection model was empirically evaluated by com-
puting the correlation between model and human compar-
ison times. Grid search was used to estimate the values of «
and g that maximized this correlation. Table A1 shows the
results for Experiments 1 and 2. In both cases, the model
provides a good quantitative account of the data.

The model contains two free parameters that are esti-
mated from the data: the curvature of mental number lines
(o) and the compression of the negative number line ().
Separate sensitivity analyses for Experiments 1 and 2 re-
vealed that the model could be reduced to a single free
parameter (Table A1l). If g is set to a default value of 1
and grid search is used to estimate o, then the reduced
model fits the data poorly. However, if o is set to a default
value of 1 and grid search used to estimate p, the fit re-
mains very good. Thus, the reflection model only requires
estimation of a single parameter B specifying the compres-
sion of the negative number line.
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A.3. Judgment effects

The reflection model specifies a core representation for
integers. It does not make direct predictions about
judgment effects, which depend on the association be-
tween the core representation and either a cognitive or
physical operation. However, it can make indirect predic-
tions when augmented with auxiliary assumptions, for
example that the natural number line is associated with
the greater predicate and the negative number line with
the lesser predicate. Under this assumption, the model pre-
dicts the general pattern of semantic congruence effects
observed in Experiments 1 and 2: a standard semantic con-
gruence effect for positive and mixed-positive comparisons
and an inverse semantic congruence effect for negative and
mixed-negative comparisons. Note that the augmented
reflection model fails to account for the semantic congru-
ence effect for zero comparisons: It predicts a standard
semantic congruence effect for zero-positive comparisons
(because positive numbers are associated with the greater
predicate) and an inverse semantic congruence effect for
zero-negative comparisons (because negative numbers
are associated with the lesser predicate), neither of which
was observed in Experiments 1 and 2. This is another in-
stance of the general finding that zero behaves differently
than other numbers.

Appendix B. The symbolic-magnitude model

This appendix formalizes the symbolic-magnitude
model, evaluates its quantitative fit to the adult data, re-
ports a sensitivity analysis demonstrating the sufficiency

Table A1
Fit of the reflection model to the data of Experiments 1 and 2.

of a reduced model with only one parameter, and summa-
rizes its qualitative account of judgment effects.

B.1. Model formalization

The symbolic magnitude of the numbers
{-=N,...,0,...,N} can be formalized as follows.

Number representations consist of N+ 1 features. The
first assumption specifies how psychological magnitudes
m; are encoded.

o

m=i%i>0 (5)

As in the reflection model, the « € (0, 1] parameter specifies
the scaling of psychological magnitudes. The second
assumption specifies how signed integer magnitudes are
constructed from psychological magnitudes. The sign fea-
ture so, the symbolic component of the representation, is de-
fined as:

0 x>0
so(x) :{1 ’:0 6.1)

The magnitude features s; through sy are defined as:

m  0<i<x
Si(x) =< pm; —i<x<O0 (6.2)
0 otherwise

As in the reflection model, the 8 € (0,1] parameter specifies
the compression of negative magnitudes relative to positive
magnitudes.

Number representations are compared using similarity-
based processing (Nosofsky, 1984; Shepard, 1987). The fea-

Full model

Reduced models?

o Free, =1 a=1, p Free

Experiment 1
Fit to data 1(33)=0.94, p <.001
Comparison to full model

Experiment 2
Fit to data r(92)=0.91, p<.001
Comparison to full model

1(33)=0.63, p<.001 r(33)=0.92, p<.001
p <.001 ns

(92)=0.61, p <.001 r(92)=0.90, p <.001
p<.001 ns

2 Parameter « reflects the scaling of number lines and parameter  the compression of the negative number line relative to the natural number line.

Table B1
Fit of the symbolic-magnitude model to the data of Experiments 1 and 2.

Full model

Reduced models?

o Free, =1

a=1, p Free

Experiment 1
Fit to data 1(33)=0.96, p <.001
Comparison to full model

Experiment 2
Fit to data r(92)=0.92, p<.001
Comparison to full model

1(33)=0.63, p <.001
p<.001

r(92) = 0.61, p <.001
p<.001

r(33)=10.96, p<.001
ns

1(92)=0.92, p <.001
ns

2 Parameter o reflects the scaling of magnitude feature values and parameter f the compression of negative magnitudes relative to positive magnitudes.
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tural difference between two number representations is
defined using a city-block metric.

dx,y) =Y I5i(x) = 5;(v)| (7)
j=0

Response time is proportional to the similarity of two
number representations, defined as a negative exponential
function of their featural difference.

RT(x,y) o e~ 4 (8)

B.2. Empirical evaluation and sensitivity analysis

The symbolic-magnitude model provides a good quan-
titative account of Experiments 1 and 2, as summarized
in Table B1. Sensitivity analyses indicate that the model’s
fit depends critically on the compression of negative mag-
nitudes (p), but is relatively independent of the scaling of
psychological magnitudes ().

B.3. Judgment effects

The symbolic-magnitude model can make indirect pre-
dictions about the semantic congruence effect under the
auxiliary assumption that a value of 0 for the sign feature
So is associated with the greater predicate and a value of
1 with the lesser predicate. Under this assumption, it cor-
rectly predicts the general results of Experiments 1 and
2: a standard semantic congruence effect for positive and
mixed-positive comparisons, and an inverse semantic con-
gruence effect for negative and mixed-negative compari-
sons. However, it incorrectly predicts standard and
inverse effects for zero-positive and zero-negative compar-
isons, respectively. This is another instance of the general
finding that zero behaves differently.
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