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THE BUNDLING HYPOTHESIS

How Perception and Culture Give Rise to Abstract
Mathematical Concepts in Individuals

Kristen P. Blair, Jessica M. Isang, and Daniel L. Schwartz,
Stanford University
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The “bundling hypothesis” describes the development of abstract mathematical concepts.
through learning. We present its elements through the investigation of a single”
conceptual change using multiple methodologies ranging from functional magnetic--
resonance imaging (fMRI) to novel classroom instruction, The conceptual change of:
interest is the transition from natural numbers to integers, which further include zero
and the negative numbers. The transition is a non-destructive conceptual change, It does’
not require “a radical reorganization of what is already known” about natural numbers:
(Stafylidou & Vosniadou, 2004, p. 504). Yet it is still a strong instance of a conceptuél :
change, because the integers cannot be derived from the natural numbers, T hey depend::
on the additional mathematical structure of the additive inverse: X + —X = 0. For the
integers, people need to realize a fundamentally new structure within their concept of:
number. .

The integers present an additional conceptual challenge for learners. Negative:
numbers do not have a “natural” perceptual referent. In this sense, the integers are:
abstract. One does not hold negative objects in one’s hand, and zero is arguably the
prototype of abstractness — structure without substance, Nevertheless, our proposal is
that people represent the increased structure of the integers by bundling in new
perceptual-motor functionality not found for the natural numbers. In short, people’
recruit symmetry to embody the additive inverse in their representation of the integers.
Without integrating symmetry into their integer representation, people can still solve
integer problems by rule, but their understanding is neither deep nor flexible. _

Figure 17.1 provides a schematic of the bundling hypothesis when applied to the
natural numbers and the integers. The hypothesis is derivative of Case and colleagues’.
(Case et al,, 1997) argument that a rich understanding of number depends on the’
integration of otherwise separate representations into a core conceptual structure. Qur’
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: iF_ig&rel'LT The bundling hypothesis

‘basic tenet is that people have perceptual-motor functions that exist prior to a full

understanding of number and that are found in infants and animals. Conceptual change

‘occurs through the integration of these functionalities, which bring new structure and
-possible operations to a concept.

A second tenet is that the integration is enabled by notation systems that provide a

“comimon external representation that anchors different meanings and perceptual

functions (e.g., Goldstone, Landy, & Son, 2010). Notation systems also have syntactic
rules that support the formal manipulation of quantities. During manipulations of

the quantities, the formal rules ensure the coordination of distinct perceptually based

properties, so that a change to one perceivable property is associated with changes in
another. Cultural activities, such as explicit instruction, help learners notice and bind the

*appropriate perceptual functions through the notations to create an integrated internal
“ representation.

. Por the natural numbers, Case et al. (1997) hypothesized that number sense depends

“on integrating different quantitative competencies that appear separately in infants as
*“basic perceptual-motor schemes. For example, infants can discriminate the magnitudes
“of physical stimuli (sound, size); they can sequence their own physical movements
-+ (motor plans); and they can distinguish small discrete amounts without enumerating
- {subitizing}. Separately, these basic schemes enable the quantitative properties of mag-
- nitude, ordinality, and cardinality, respectively. According to the bundling hypothesis,
- these discrete perceptual-motor uses of quantitative information are integrated through
~ the symbolic, notational structures of mathematics. For example, the digit 5 can refer to

the magnitude of a sound {five decibels}; it can refer to the order of a sound {fifth}; and,
it can refer to the number of sounds (five taps}. The notation system permits the different
meanings to make contact, and articulated symbol systems have their own sets of rules
that enforce the coordination for how changes to ene meaning affect other meanings. For
instance, adding 1 to a set of 5 (a change in cardinality) also increases the bigness of the
set from 5 to 6 (a change in magnitude). Appropriate instructional activities can help
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people learn to coordinate and integrate the different aspects of quantity. In teaching
studies, Case and colleagues found that instruction that integrates separate quantitative
meanings is more effective than instruction that strengthens each meaning separately.
(Griftin, Case, & Siegler, 1994}, '

The bundling hypothesis is consistent with the basic claims of diverse developmental’
theories. It agrees with nativist arguments that the relevant structure finds its basis in
capacities conferred by evolution (e.g., Chomsky, 1966; Spelke, 2000). 1t also agrees with
embodied arguments that the basic building blocks of abstract understanding begin in-
perception and possible physical actions in the world (e.g., Glenberg & Kaschak, 2002;:
Lakoff & Nifiez, 2000). Finally, it reconciles these tenets with the constructivist tradition.

that argues representations are constructed or assembled through experience (Piaget,
1952). It does this by proposing that native abilities need to be integrated to make a weil-;
rounded concept of number. The integration allows new concepts to emerge that are
more than the sum of their component parts. For example, an understanding of the

natural numbers allows for more precision and flexibility in interacting with quantities

than would an innate approximate magnitude system. -
For the natural numbers, one could argue that the “built in” capacities of humans for

perception and construction are sufficient to explain development, Even monkeys can:
learn to associate natural number symbols with the perceptual referents {Cantlon &
Brannon, 2007), and humans may be evolutionarily hardwired for natural numerical.
processing in much the same way as has been argued for language processing. In contrast,

the integers are a relatively new and abstract cultural innovation, with their first full

expression occurring only a few hundred years ago. There is no blueprint for integer:
concepts in the unformed child, and there is no maturation plan for the emergence of !

integers. Instead, people need to exapt abilities that evolved for one type of problem t6

help with another. At the cortical level, Dehaene and Cohen (2007) have called this the ™
neuronal recycling hypothesis. Brain regions that are good at specific types of com- -
putations are repurposed so they can handle (and enable) cultural demands that rely on’
those computations, As we present below, brain regions that support the detection of:

symuetry may be recycled to help with integers. -
Culture provides the resources and pressures to help integrate functionality in specific.

ways. There are two research traditions of special importance. The first involves the:-
abovementioned role of inscriptions and symbolic rules for organizing thought (e.g., Cole::
& Engestrém, 1993; Lehrer & Schauble, 2000). The second involves the influence of
sociocultural processes for driving specific forms of cognitive reorganization (e.g., Saxe;.

1981, 1988}, Vygotsky (1986), for example, proposed that culture-level “scientific” ideas

help drive development through a process of internalization from the social plane to the
individual plane. As discussed by Leach and Scott (2008), internalization does not mean’:
“direct transfer”; rather the individual interprets the ideas encountered on the social plane,

Quoting Vygotsky's contemporary A. N. Leontiev, “the process of internalization is not the -

transferral of an external activity to a pre-existing ‘internal plane of consciousness’ it is

the process in which that plane is formed” (cited in Leach & Scott, 2008, p. 655). To

understand this process, it is important to understand the building blocks that enable and -
constrain learning. The bundling hypothesis is an attempt to integrate the insights of:

developmental and sociocultural traditions to explain conceptual change. :

In the case of the integers, we claim that basic perceptual-motor capacities for sym- :
metry become bundled together with other quantitative properties through the influence -
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of cultural inscriptions and social interactions. To support this hypothesis, we make an
argument with three steps. The first step is to show that educated adults exhibit

ymmetry-enabled processes when reasoning about integers. This helps to demonstrate

that people’s understanding of the abstract integers is indeed grounded in perceptual-

wtor functionality. To simplify subsequent exposition, we use the term “analog” to refer

{to.representations and processes that borrow their structure from perceptual-motor
activity (Shepard & Cooper, 1986). Analog means continuous per physical experience,
and it should be distinguished from syntactic or verbal rules.

The second step is to show that symmetry has been bundled with other quantitative
properties of number, namely magnitude. We also show that adults have developed an
analog representation of negative number magnitudes in their own right. In contrast, we
find that children who have learned the integers appear to reason by rule rather than
using an analog representation. This leads to the final step of our argument. Current
curricula for teaching children about integers do not incorporate symmetry, which may
explain why the children had not bundled symmetry into their understanding of the
integers. (The adults may have learned to integrate symmetry during algebra, which
requires balancing equations and interpreting quadrants in Cartesian coordinates.)
Therefore, we conducted an instructional study. One condition emphasized symmetry.
The students in the symmetry condition were able to solve a greater array of problems
compared to students who learned in more traditional ways. This supports the claim that
cultural activity, in this case instruction, helps bundle together the perceptual functions
into a coordinated representation.

- EVIDENCE OF SYMMETRY IN THE INTEGER REPRESENTATION

The first step in our argument involves evidence of analog representations when

: reasoning about integers. We begin this section with behavioral data and end with brain

data, When looking for behavioral evidence of analog representations in cognitive phe-
nomena, researchers often examine overt motor behavior. Examples include the spon-
taneous use of gestures while problem solving (Schwartz & Black, 1996) and the

facilitation or interference of inferences by enforced gestures {Schwartz & Holton, 2000},
“In most cases, these studies use tasks that require some form of spatial information to
~achieve an answer. For example, participants may be asked about the spatial behavier of
2 mechanical system {Hegarty, 1992), whether a tomato can be squeezed {Klatzky,
. Pellegrino, McCloskey, & Daherty, 1989), or the direction of object motion (Wexler &
“Klam, 20013, Here, we take a different appreach, because we want to show that even
~abstract problems can involve analog representations.

“7'We set a number of constraints to ensure compelling evidence. First, we wanted

~evidence of analog representations using a task that does not display relevant spatial
“information or require spatial manipulation, If successful, it would constitute strong
sevidence of analog representations in abstract reasoning (as opposed to perceptual
“involvement in a perception-like task). Second, we did not want to rely on evidence of
~overt motoric movement, which can often be discounted as a correlate of problem
<solving rather than a cause. Instead, we looked for response time profiles that implicate
analog representations. This methodology is characteristic of research on analog imagery
* {Shepard & Cooper, 1986), where people exhibit response times that indicate they are
.mentally rotating imagined objects.
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One example of a relevant paradigm that fits these requirements comes from research 1000ms
on the comparison of quantitative magnitudes. In a seminal study, Moyer and Landauer +
(1967) had participants judge which of two natural number digits was greater (or lesser); | 400r
Participants exhibited a symbolic distance effect: They were faster comparing digits that -
were quantitatively far apart (1 vs. 9) than near together (1 vs, 3). It is important to note:
that the digits were not further apart on the screen, so it was the implied magnitude:: 113
differences that drove the results, not spatial stimuii. The symbolic distance effect is:
commonly interpreted as evidence for a mental number line such that magnitudes that - v 10
are farther apart on the line are faster to discriminate (Restle, 1970). A related ﬁnding 1§ Thinkef |
the size effect: For pairs of natural numbers of equal separation, people are faster S?Adggg‘ ;R ¥
comparing smaller numbers (1 vs. 4) than larger numbers (6 vs. 9) (Parkman, 1971}, The Is Ff;;;“?

size effect indicates that the number line is psychophysically scaled, because smaller:
numbers are easier to discriminate than larger numbers. In sum, the time it takes to judge
which of two positive number digits represents a greater magnitude exhibits a continuous:
logarjthmic function. Importantly, the distance and size effects are also found when
people compare physical quantities such as the joudness of two tones. Brain data indicate -
that a common brain region is involved in both number magnitude comparisons and
physical stimuli comparisons. The intraparietal sulcus (IPS) shows parametric moda-
lation; it is more active for the harder near-magnitude comparisons than for the easier.
far-magnitude comparisons whether the stimuli are digits or physical magnitudes (Ansari;
Garcta, Lucas, Hamon, & Dhital, 2005; Gobel, Johansen-Berg, Behrens, & Rushworth
2004; Kaufmann et al,, 2005; Pinel, Dehaene, Riviere, & LeBihan, 2001) . ¥
We adopted the methodological logic of the symbolic distance effect to examine
whether people rely on symmetry to reason about integer problems. In our task, people
saw a pair of symbolic digits, and we asked them to find the quantitative mid-point of the
digits. This bisection task can be solved without imagining a number line, for example, -
by adding the two digits and dividing them by 2. If people exhibit evidence of symmetry. -
in this task, it makes a strong case that people use analog representations for the abstract.
integers. .
We predicted that people would be faster for bisection problems when the two digits -
were more symmetric around zero (if put on a number line). For example, people should
be faster to find the mid-point of —4 and 6 compared to -2 and 8, because —4 and 6 are
more symmetric with respect to zero. This would correspond to findings using visual
displays that exhibit various degrees of spatial symmetry. Royer (1981) found that people
are faster to judge the symmetry of a visual display as the display exhibits stronger:
symmetry. L
Tsang and Schwartz (2009) asked adults to solve a series of bisection problems. Theleft
side of Figure 17.2 shows the basic task, and the right side shows examples of the types.
of problems people received. There were perfectly symmetric problems (6 and ~6) and
perfectly anchored problems (0 and 12). Badland problems were as far away from either
as possible (4 and -8), and nearly symmetric and nearly anchored problems were some-
where in between. People also received pure positive problems and pure negative prob-:
lems that did not cross the zero boundary. '
Figure 17.3 shows how long it took people to answer the bisection problems. When
problems were perfectly symmetric or anchored, people were very fast, presumably
because these were well-memorized number facts. Of more interest are the “tuning’
curves. People became progressively faster as the digits neared quantitative Symmetry.
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- about zero. Although the task was purely symbolic and the digits always appeared in the

same display focations, people seemed to be taking advantage of the impiied quantitative

. symmetry. These results held whether people saw the target digits one after another

mstead of side-by-side, and whether they were asked to approximate the answer or told

- to use a formula to find the answer: (a + b)/2. The fact that the pattern appeared even

when people used a symbolic algorithm indicates that analog symmetry is built deeply

- into the mnteger representation,

A limitation of these data is that people also responded faster as problems became
more anchored (one of the digits was a neighbor of zero). Was the same underlying

‘process responsible for the improved performance for the symmetric and anchored sides
© of the curve, or was the symmetry performance due to symmetry specific processes? This
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is where neural evidence can be useful. It may show differences in underlying process.

despite behavioral similarities.

Tsang, Rosenberg-Lee, Blair, Schwartz, & Menon (2010} conducted the same study in :
an tMRI paradigm. Figure 17.4 shows three regions that increased activity as problems
became more symmetric and responses became faster. These three regions did not show -
increased activity as problems became more anchored, despite similar reductions in -
response time. Thus, the activation was not a general side-effect of faster response times, -
but rather, it was selective for the implied quantitative symmetry of the stimuli. The
involved brain regions have also been implicated in perceptual processes involving

symmetry. The left inferior LO (lateral occipital} cortex is implicated in the perception of
visually symmetric stimuli {Sasaki, Vanduffel, Knutsen, Tyler, & Tootell, 2005; Tyler et al

Wilkinson & Halligan, 2003).

In summary, given a display of purely symbolic stimuli exhibiting no relevant spatial -
information (i.e., digits), people demonstrated a tuning curve that indicates sensitivity to
implied symmetry. People were faster to bisect problems that were near symmetric with
respect to zero (-5 and 7). Additionally, brain regions associated with perceptual -
symmetry became parametrically more active as problem pairs approached symmetric,
Pending further evidence, it appears that people have developed internal representations -
of the integers that embody the integers’ new structure — the additive inverse — in

symmeltry.
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Figure 17.4 Areas of the brain that increased activation as bisection problems increased in symmetry about zero. The top -
panel shows the location in the brain of three areas that increased activation as the implied symmetry of the digit pairs

increased {i.e., the degree to which the two digits approximated the additive inverse). The bottom panel piots the activation”

changes as the digit pairs became more and less symmetric. All areas of the brain are constantly active, and percentage

signal change refers to the change in activity over a haseline level {adapted from Schwartz, Blair, & Tsang, 2012)

2005) and regions close to the right MTG (middle temporal gyrus) and nearby superior :
temporal regions are implicated in visual bisection tasks (de Schotten et al., 2005;-
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ANALOG MAGNITUDE OF THE NEGATIVE NUMBERS

‘The preceding section argued that people rely on symmetry to facilitate thinking about
:mtegers This section argues that symmetry has been bundied with other properties of
the integers. It does so by devclopmg evidence of symmetry involvement when people
- complete a task that requires comparing magnitude rather than bisection. If people

exhibit evidence of symmetry in a magnitude comparison task, it implies that symmetry

has been bundled up with other properties of the integers such as magnitude.

A second issue addressed by this section is whether people represent the magnitude

“of negative numbers in their own right. One possibility is that people do not have a

distinct analog representation of the negative numbers. Instead, people might reason

. about negative numbers by using their analog represéntation of natural number
- magnitude and adding a few supplementary rules { Fischer, 2003; Ganor-Stern & Tzelgov,
© 2008; Prather & Alibali, 2008; Shaki & Petrusic, 2005; Tzelgov, Ganor-Stern, & Maymon-

Schreiber, 2009). Given the task of deciding whether -2 or -5 has a greater magnitude,

~people can compare positive 2 and 5, and then give the opposite answer (“3 is larger than

2,50 the correct answer is that =2 is larger than =5”). Or, when asked which is the greater

‘of =5 and 2, they can simply rely on the rule that positives are always greater than
- negatives. In this hybrid representation of negative numbers, the sense of magnitude
© comes from the positives, and people add new structure by using symbolic rules.

A second possibility is that people might represent negative magnitudes in their own

right by developing a “leftward” extension of the conventional number line. Using this
~extended model, people could compare -2 and -5 directly.

Varma and Schwartz (2011) found that neither the first nor the second possibility is
exactly right. While educated adults can reason about negative numbers by using positive

‘numbers supplemented with rules, they also appear to have a representation of negative

numbers in their own right that they can call upon, and this representation is symmetric

“to the positives rather than a linear extension. In contrast, 12-vear-old children who are

relatively new to negative numbers appear to use a hybrid model.

Varma and Schwartz asked adults and 6th-grade children to make speeded judgments
about which of two digits referred to a greater amount. People saw two digits on a screen,
and they had to press a button on the side of the greater digit. (For this task, participants
understood that a ~2 should be considered a greater amount than 5. In its own right,
this is an important development, because children need to uncouple magnitude and
direction for the integers; Bofferding, 2011.) People completed three major types of
comparison problems: pure positive problems (e.g., 5 vs. 2), pure negative problems (e.g.,
-5 v8. -2}, and mixed problems that spanned the zero boundary (e.g., -5 and 2).

The key evidence for an analog representation of magnitude comes from the
comparison of response times for near and far problems. Near problems involved digit
pairs that were three or fewer steps apart {e.g., 1 vs. 3,—5 vs.~7, -2 vs, 1). Far problems
involved digits that were seven or more steps apart (e.g., 1 vs, 8, -2 vs, =9, =3 vs. 5). If
people rely on an analog representation, then near comparisons should take longer than
the corresponding far comparisons, per the symbolic distance effect described earlier.
Again, the logic is that similar magnitudes (near) should be harder to discriminate than
more distinct magnitudes (far).
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Adult Representations of Negative Numbers

Figure 17.5 shows the results. We first consider the adult pattern. Both the pure positive”
and pure negative problems show the signature of an analog magnitude representation -
— near comparisons take longer than far comparisons. The striking finding involves the-
mixed comparisons, which showed an inverse distance effect (cf. Krajcsi & Igacs, 2010,

People were faster for near-mixed comparisons than for far-mixed comparisons. For’
examiple, people were faster to judge the larger of —1 vs. 2 than -1 vs. 7. By a pure”

magnitude account, the former comparison should be harder, not easier, because the:

digits are closer in magnitude. This suggests the adults have incorporated some addi--
tional structure into their representation of integers besides pure magnitude.

Varma and Schwartz {2011) created the mathematical model in Figure 17.6 to account
for these distance effects. The model also incorporates the standard size effect: Smaller -
magnitudes (1 vs. 3) are compared more quickly than larger magnitudes (7 vs. 9) when'

they are both the same distance apart. This is why the lines are curved logarithmically - -

smaller numbers are further apart and more distinct in the representation,

The striking characteristic of the best fitting model (Figure 17.6) of the Varma and

Schwartz data is that the negatives are a reflection of the positive numbers rather than*
an extension of the positive numbers. By this model, the analog representation of
negative numbers is not simply an internalization of the standard number line. If it were
an internalization of the number line, then near-mixed comparisons (1 vs. =2} would be
harder, not easier than far-mixed comparisons (1 vs, -7} because the near-mixed com-

parisons would be closer to each other in the representation. Instead, the representation -

capitalizes on the symmetry of negative and positives about zero, which makes near-~

mixed comparisons easier because they are on cither side of, and close to, the boundary

point of zero. .
The visual presentation of the model is not intended to imply that people use a picture
ofa sideways V when they think about integers. Rather, the model describes the structural -
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Figure 17.3 Response times for digit comparisons. Positive comparisons invalved fwo positive digits {e.g., 2 vs. 8); negative -
comparisons invalved two negative digits {e.g., -2 vs. ~8); and, mixed comparisons invoived & positive and a negafive digit:
{e.g., ~Z vs. 8). Near comparisons used digits that were within three steps of each other (—1 and -4}, and far comparisons.
used digits that were seven or more steps apart (! and --8). (Adapted from Varma & Schwartz, 2011.)
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ly that people use a picture
del describes the structural

“relations that determine what is easy and hard to think about. The model posits that
‘people have bundled the structural relation of symmetry into their analog representation
“of magnitude.

tive | A second notable point of the model is that the negative magnitudes are less distinct
- ij “than the positive magnitudes. In Figure 17.4, the negative magnitudes are more com-
] pressed than the positive numbers. This makes sense in that people have had much less
i_,jl -experience with negative numbers than positive numbers, Blair, Rosenberg-lee, Tsang,

‘Schwartz, & Menon {2012) examined this effect using fMRI.
Participants performed a similar magnitude comparison task in an MRI scanner. Two
‘numbers were presented on the screen and participants determined the greater or lesser
“number. Of particular interest was the representation of positive and negative numbers.
If people have an independent representation of negative numbers that is compressed
relative to positives, as predicted by the mathematical model, we would expect negative
. comparisons to elicit different activation in the 1PS. Recall that the IPS s involved in
magnitude processing.

The key analysis examined patterns of activation in the IPS for paositive-only and
negative-only comparisons independent of overall reaction time or activation level. A
- representational similarity analysis compared the spatial patterns of activation between

e UL
itive digits (e.g., 2 vs, 8); negative -
/ed a positive and a negative digit
—land -4), ang far comparisons
hwartz, 2011)
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Figure 17.7 Correlation between the degree of neural overlap for near and far negative number comparisons and reacti'p'r.z:-

time for soiving negative comparison problems. People who exhibited larger overlap in brain regions for near and fa
negative comparisons were also slower to answer negative comparison problems, :

near and far comparisons for positive numbers and for negative numbers. The logic is:
that if there is high overlap in regions of activation for the near and far problems in’
the magnitude processing region (IPS), then people do not have a well-differentiated :
magnitucle representation of the numbers. In contrast, if there is less overlap in regions

of activation, then people have a more differentiated representation of number magni

tudes. The analysis revealed that neural responses in the IPS were more differentiated:

among positive numbers than among negative numbers. This helps to explain wh

people are slower comparing negative numbers — their representation of negative.
number magnitudes is less well-defined. Figure 17.7 shows that degree of neural overlap’
for near- and far-negative comparisons is strongly correlated with slower response times:
for solving negative comparison problems, These findings point to a unique, but less
well-developed, magnitude representation for negative numbers, as predicted by the
computational model. If individuals converted negative numbers to positive vahues’
before making magnitude comparisons there should not have been differences in the .
similarity for negative problems compared to positive problems, because both:

comparisons would involve the representation of positive magnitudes.

Immature Representations of Negative Numbers

Next, we return to the behavioral data and the children’s results in Figure 17.5. The
children were equally accurate as the aduits (>95%). However, they show interesting:
differences in their response time patterns. Most notably, they do not show a distance’
effect for the mixed comparisons; the response times for near- and far-mixed problems
are the same. Rather than consulting a magnitude representation of negative numbers, -
they were simply using a rule that a positive is always greater than a negative (i.e., they

were only looking at the sign on the digits, and disregarding the magnitudes).

. A more subtle diff
¢omparisons than th
comparisons. One int
n_egétive comparison
entation and applyin
analog representation
numbers has less rest
children.
“ In summary, well-
fation of the negative
have bundled magni
rganized as a reflect
standard number lir
enhances the additis
structure of the integ
isnot a simple copy ¢
The second key fir
‘problems, but they di
Instead, they were ap
tation. This yields tw
solve mathematical p
inunderlying semarn
s we demonstrate be
“involves the cross-sc
alved the problem:
_e"'g'a_tive} without re
“adults solved the prc
This reverses the ust
1941). With the inte;
Per the bundling !
m'd'si:ructure of th
learning integers, ch
number that exhib
Jecause negative nu.
itially understand
Over.experience, the
changes the original
unique properties o
tives and negatives.
notations provides
richer, abstract conc

CULTUR,

he first step in ou
mmetry to think



o comparisons ang reaction

imbers. The logic is
md far problems in
- well-differentiated
s overlap in regions
- of number magni-
more differentiated
Ips to explain why
atation of negative
ee of neural overlap
YWEr response times
» a unique, but less
1s predicted by the
to positive values
1 differences in the
ms, because both
28,

n Figure 17.5, The
y show interesting
‘0t show a distance
ar-mixed problems
negative numbers,
negative {i.¢., they
nitudes).

in regions for near and far .-

The Bundling Hypothesis » 333

- A more subtle difference is that the children were faster at making pure negative
- ‘comparisons than the adults, even though they were slower for the pure positive
“comparisons. One interpretation of this finding is that the children were solving the pure
“Regative comparison problems by using their well-developed natural number repres-
‘entation and applying a rule to {lip the answer. In contrast, the adults relied on their
~.analog representation of negative numbers. Because the adult representation of negative
‘numbers has less resolution than the positive numbers, it took them longer than the
children,
. In summary, well-educated adults appear to have an independent analog represen-
“ation of the negative numbers. Moreover, the overall integer representation appears to
“have bundled magnitude and symmetry together, with negative and positive numbers
-organized as a reflection of one another. The representation is not simply a copy of the
“standard number line seen in textbooks, but rather it takes a symmetric form that
“enhances the additive inverse. This representation embodies the new mathematical
structure of the integer system compared to the natural numbers, but the embodiment
" is not a simple copy of perceptual-motor experience.
“". ‘The second key finding from this study is that children were able to solve the integer

problems, but they did not appear to have a distinct representation of negative numbers.

~ Instead, they were applying symbolic rules to augment their natural number represen-
*tation. This vields two points. The first is the well-known observation that people can
- solve mathematical problems by reference to symbolic rules and math facts without using
-“an underlying semantic representation. This can yield much faster problem solving but,
“as we demonstrate below, it also leads to less flexibility and generativity. The second point
" involves the cross-sectional comparison of the children and the adults. The children
* solved the problems using an abstract rule (e.g., a positive is always greater than a
"negative) without reference to a representation of negative numbers. In contrast, the
“adults solved the problems by reference to a more perceptually derived representation.

This reverses the usual concrete-to-abstract learning progression (Bruner, 1996; Piaget,
1941). With the integers, there appears to be an abstract-to-concrete shift,
Per the bundling hypothesis, we speculate that over time the symbolic representation

" -and structure of the integers slowly enlists perceptual-motor representations. When

learning integers, children already have an analog magnitude representation of natural

“number that exhibits perceptual-motor properties (Sekuler & Mierkiewicz, 1977).

Because negative numbers and zero do not have a ready perceptual-motor basis, children
initially understand them by using symbolic rules that map them to natural numbers.
Over experience, the structure of the syntactic rules and their operations over integers
changes the original magnitude representation of natural number to directly embody the
unique properties of the integers, such as the fact that zero is a2 boundary between posi-
tives and negatives. By the bundling hypothesis, appropriate engagement with symbolic
notations provides a mechanism for transforming perceptual-motor experiences into
richer, abstract concepts.

CULTURAL SUPPORTS FOR BUNDLING SYMMETRY INTO
THE INTEGERS

The first step in our support of the bundling hypothesis was evidence that people use
symmetry to think about purely symbolic problems involving integers. The second step
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was to show that symmetry has been bundled into the other properties of number,:

specificaily magnitude. The third step is to show that cultu
sentations and activities can facilitate the bundling of symmetry into the integers. To"
complete this theoretical demonstration, we turned our basic hypothesis and research-
into a practical application that unproves early instruction nvolving the integers,
Instruction that introduces the integers usually uses a number line medel, a can-
cellation model, or both (Bofferding, 2011; Liebeck, 1990; Gregg & Gregg, 2007). In the
number line model, students are introduced to negative numbers as a lefrward extension
of the natural number line. Addition and subtracti
ment along the number Iine. For example, to do addition in enVisionMATH (www.
pearsonschool.com/envisionmath), students imagine standing on the first addend on the.
number line and facing the positive direction. Walking forward means adding a positive

number and walking backward means adding a negative number. For subtraction’

students face the negative direction and walk forward for subtracting a positive and:
baekward for subtracting a negative. In the number line model, integers can be thought
of as positions and arithmetic can be thought of as movement or changes in position. . -

I the cancellation model students are encouraged to think of integers as amounts.
rather than distances and directions, with the negative and positive integers representing

opposite quantities. Students learn that the positive and negative quantities cancel each .

other out, and they model arithmetic problems using a set of concrete counters {small*
disks}. For example, for the addition problem -5 + 2, five negative (sometimes red}
counters are placed in a row, two positive (sometimes yellow) counters are placed ina’
parallel row, and the positive and negative counters that match up cancel each other out,

leaving -3 remaining as the answer. For both the number line and cancellation mode]

5y
teachers may also introduce a set of rules to supplement the physical Iepresentation. For:
instance, given the problem 3 + (=5} students can learn to subtract the smaller number:

from the larger number ignoring the signs, and attach a negative sign when the original
negative addend is larger than the positive addend, -
Notably, these curricula do not explicitly incorporate symmetry. To find out i
including symmetry would improve student learning, we conducted a study with fourth .
graders who had not yet learned about hegative numbers. Students learned over four days
in one of three instructional conditions: Jumping, Stacking, and Folding, The Jumping -
and Stacking conditions mapped into current instructional models and the Folding
condition additionally introduced symmetry. The conditions are named for the core
action students engaged in while physically modeling integer addition problems:
jumping a figurine along a number line, stacking blocks on a number line, or tolding the
positive and negative sides of the number line together, E
The purpose of the physical activities with the manipulatives was to draw student’
attention to the key properties of inferest {e.g., folding about a symmetry point}, Simply
exposing students to appropriate cultural representations or phenomena is not sufficient
to ensure recruitiment of the appropriate mental functionality. People need to learn to
notice the relevant property and operations. Any given action or perceptual stimuli has -
an infinite amount of information {Gibson, 1969), so it is not enough to just assume that'
people will pick up the relevant properties, even if they are implicit in their actions o :
perceptions. For example, consider the traditional number line in Figure 17.8. It exhibits
avariety of properties such as ordinality and equal intervals. It also exhibits edges, curved -
fonts, placement on the page, arrows on the ends, and so on. It also includes symmetry
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Figure 17.8 Standard representation of the integers in instruction

“about zero. But, if one does not already know the symmetry of the additive inverse, it
-would be easy to miss it amid all the other kinds of information. Zero would be just
sanother point on the line.

* The first phase of the instruction comprised a series of instructional games using

‘physical manipulatives that we designed to draw student attention to different ways of

thinking about negatives. Figure 17.9 shows how the conditions differ when playing a
simple addition game. The Jumping condition (Figure 17.9C) enacted the addition

“problems in each game by hopping a plastic figurine back and forth along the number
“line. The Stacking condition (Figure 17.9B) instead used a representation of stacked
- blocks. For example, for +3 + -2, students started at zero and placed three biue blocks
on the positive side of the number line to represent +3. Then, working their way back
toward 0, they placed two red blocks on top to represent 2. The stacked portion
“canceled out,” and the remaining unstacked portion was the answer, in this case 1 blue

positive block. For the Folding condition (Figure 17.9A), the manipulatives included a

“hinge at the number zero, allowing the students to fold the number line in half. Students
- represented both addends on the number line at the same time, for example with three
~blue blocks on the positive side and two red blocks eon the negative side. They then

snapped the sides together by folding at zero. The blocks that matched up after folding
~canceled out, and the ones that did not match ap were the remaining answet.

After two days of working with the manipulatives, students transitioned to computer

. games. The computer games maintained the differences between conditions, and they
" ‘enabied students to complete more questions in the available time (students did not have
-+ to fuss with the concrete materials). With the computer games students did not engage
- _in physical behaviors that had any sort of correspondence to manipulating the physical

number line objects. Instead, the computer games showed the respective spatial repre-
sentations and transformations, and students simply entered symbolic answers through
discrete clicks. Over time, the computer games faded the spatial representation of the

The study included a number of learning measures. On a simple measure of adding
negative and positive digits, all the conditions improved significantly with no differences
between conditions. This indicates that students learned the basic content from all three
conditions. The post-test also included questions that required students to extend their
understanding to new problems that they had not been taught, such as placing positive
and negative fractional amounts on the number line or solving missing variable problems
with integers. On these generalization items, students in the folding condition performed
significantly better, indicating that they developed a more flexible understanding of
integers (Figure 17.10).

Additionally, instruction influenced children’s strategies for solving problems. Students
in the folding condition used significantly more symmetry-based strategies, which were
associated with better performance. For example, when asked to put the number 4 on a
number line on which only —4 and 0 were marked, students in the symmetry condition
were more likely to measure the distance from 0 to —4 with their fingers, and then measure
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Figure 17.9 Leftovers Game schematic for each instructiona! condition. This 15 2 7—4 player card game played during the
second half of the curriculum. Left column shows the steps for ane turn in the game. The three panels show the corres-

perding actions with manipulates for the (&) Folding, (B) Stacking, and (C) Jumping conditions. The exampla shown is
equivalent to solving the equation 3 + -2 = 1 (adapted from sang, 2012}, o

the same distance on the right side of 0 to place positive 4. Students in the other conditions;;

were more likely to startat 0 and draw four tick marks in the positive direction,
number 4 at the fourth tick mark.
Tsang (2012) also included a measure that looked for negative side-effects of the
symmeltry instruction. As people develop structures that are optimized for handling:
classes of problems, these structures may interfere with other classes of problems that
would be better served by different organizations of knowledge. Evidence for this point
comes from a computerized reaction tire measure. A number line was shown on th_exj.
screen with only the endpoints labeled. For some trials, the endpoints were symmetri
(e.g., =6, 6), such that 0 would fall in the center of the line. For other trials, the endpoints
were non-symmetric {e.g., -4, 8) such that zero would not be in the center of the line
One part of the number line was occluded by a green box., Students indicated whether the:
number 0 would fall in the area occluded by the box. Students in the jumping and-
stacking conditions were unaffected by whether the endpoints on the number line
indicated symmetry or not. In contrast, students in the folding condition were signifi:
cantly slower for the non-symmetric problems. These students had learned to rely on'
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Figure 17.18 Score on generalization composite by condition {adapted from Tsang, 2012

-_'s.ymmetfy, and when it was not there, they had to refigure another way to solve the
“problem.

‘Ideally, people develop appropriate structure for the most prevalent and important
classes of problems they wili experience, and situations where that structure is an impedi-
ment are rare. This appears to be the case for symmetry and the integers. Regardless of

" condition, students who exhibited greater interference for the non-symmetric problems
- +did much better on the generalization composite score that required solving novel
- quantitative problems. They had developed a better representation of integer symmetry,

which helped them with most problems, but alse hurt them on problems designed

to make a symmetry orientation sub-optimal. Combined, these resuits indicate that

students in the symmetry condition were more likely to incorporate the relationship of

symmetry inteo their representations of integers, as evidenced by reaction time, and across _
conditions, students whose representations incorperated symmetry had a more flexible

and generalizable understanding of the integers.

CONCLUSION

-The bundling hypothesis attempts to provide a mechanistic account of how new

mathematical concepts are formed. Through socially organized interaction and highly
structured cultural symbol systems, distinct perceptual-motor functions get bundled
together to enable new concepts with a higher-order structure. We provided a chain of
evidence regarding integers that supports several of the claims within the bundling
hypothesis. Adults exhibit behavior and brain activation that indicates the involvement
of symmetry when finding the midpoint of a positive and negative digit. Symmetry
appears to be bundling into adult sense of magnitude, because they show distinct
patterns of response times when comparing the magnitudes of digits an either size of
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zero. Adults also exhibit a distinct neural representation of negative numbers, and adults

who have more spatially distinct brain patterns of activation for negative number

comparisons also show faster response times. Children who have had traditional’

instruction do not exhibit these patterns, but instead, they appear to rely on rules that -
allow them to solve problems by consulting their representation of positive numbers
supplemented by rules. However, with instruction that emphasizes symmetry, children -
exhibit evidence of relying on symmetry when they solve visual bisection tasks.

Moreover, students who have integrated symmetry into their understanding of integers

are more successful at solving problems that go bevond what they have been directly:

taught.

There are aspects of the bundling hypothesis that were not investigated. We did not
seek direct evidence on the importance of instruction that integrates the different per-:
ceptual properties into a common external representation. We have suggestive evidence -
but it has not been rigorously tested. In pilot work, we taught children about symimetry,

without making careful connections to the other properties of number (interval,

magnitude, etc.). Symmetry turned into a “free-floating” property of the integers. For:

instance, the children never noticed that positives go on the right and negatives goon
the left. We also have not conducted a pre—post intervention where we examine whether
children Increase the recruitment of brain regions associated with symmetry after
instruction, and thus, we have not closed the loop showing that instruction causes

“bundling” within the brain. We have not determined whether the involvement of -
symmetry makes a difference as students move to more complex topics such as algebra,

which makes great use of the additive inverse.

In the meantinte, if we assume that something close to the bundling hypothesis is true
for the integers, are there other conceptual changes where the hypothesis would be a
possible explanationt Would the bundling hypothesis help explain how people manage

to find meaning and structure in other highly abstract mathematical concepts such as

calculus’s “instantaneous change™? Perhaps the bundling hypothesis can provide a good

account of children’s transition from the interval scale of natural numbers to the ratio
scale of rational numbers. In addition to overcoming a simple natural number

interpretation of fraction notations (e.g., Stafylidon & Vosniadou, 2004), children need:
to recruit a “sense of ratio.” According to the bundling hypothesis, this would be found:

in native perceptuzal abilities that can provide the additional structure for rational

number. There are many possible candidates, given that visual structure is often invariant

of absolute size.

The bundling hypothesis is an attempt to explain how new structure arises in the mind .
of the learner. It is not an account of how people jump from one explanatory structure
to another during a process of conceptual change, as would be the case in switching

explanatory paradigms from mechanical causality to stochastic emergence (Chi, 2005},
Rather, it 15 an attempt to answer the question of how an explanatory structure can

develop in the first place. For the integers at least, it appears that culture and external .

representations help people bind previously discrete perceptual-motor systems into
integrated conceptual structures.

CAnsarh, ) Garcia, N Lk

in children and adult

Blair, K. P, Rosenberg-1ee

number representatic

Bofferding, L. C. {2011).

integers. Doctoral dis

' ; '_Bruner, J. {1996}, The cull
wCantlon, 1. F, & Brannon,
 Case, R., Okamoto, Y., G

" conceptual structures
Developinent, 61, 1-2

Chi, M. T, H. (2005). Con

Tournal of the Learni

= Chomsky, N, (1986). Car

Row.

:::CO&. M., & Engestrom, ¥

Distribused cognition:

_Dehaene, 5., & Cohen, L.
~de Schotten, M. 1., Urba

* parietal-frontal patln

Fi_scher, M. H. {2003}, Co,
=Ganor-Stern, D, & Trelgo

157-163.

' Gibson, E. (1969}, Princit
':.{}ienberg, A M., & Kaose

558565,

_{}_bbei, 5. M., Johansen-1

- activation during nw
Goldstone, R. L., Landy, D

“Gregg, F & Gregg, D UL

13013, 46-50.

__'.G.r_ifﬂn, S AL Case, R, &

formal learning of w
Integrating cognitive !

Hegarty, M. (1992}, Mea

- Experimental Psychol

: K:_:s_ﬁfmmm, L., Koppelstac

- correlates of distang
Newrolmage, 25(3), &

. Klatzky, R.L., Pellegrina, ]

- representations in ser

Krajesi, A., & lgdcs, J. (201

“shorteut, European fa

: _[_,_akoff, G., & Niiiez, R, {

 being. New York, NY:

Leach, T, & Scott, £ H. (¢

seciocultural perspec
Routledge.
Lehrer, R., & Schauble, |
2 stadents’ <lassificatio

_ Liebeck, B (1990). Scor

: Mathemarics, 213, -
Moyer, R. §., & Landauer
15191520,



tive numbers, and aduits.
on for negative number’
20 have had traditional -
sear to rely on rules that
ion of positive numbers
sizes symmetry, children’

visual bisection tasks,
nderstanding of integers -
they have been directly -

nvestigated. We did not B
grates the different per- -

lave suggestive evidence

atldren about symmetry
s of number (interval,

arty of the integers. For
sht and negatives go on

2re we examine whether |
1 with symmetry after

that instruction causes

ter the involvement of -
< topics such as algebra, -

dling hypothesis is true
hypothesis would be a
in how people manage
tical concepts such as
esis can provide a good
il numbers to the ratio
nple natural number
1, 20043, children need
5, this would be found
structure for rational
icture is often invariant

“ture arises in the mind
explanatory structure
the case in switching
mergence {Chi, 2005).
"éanatoz'y structure can
t culture and external
t-motor systems into

The Bundling Hypothesis - 339

REFERENCES

* Ansari, D, Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbuolic number processing

i children and adulss. NewroReport, 16163, 1769-1773.

Blair, K. P, Rosenberg-Lee, M., Tsang, | M., Schwartz, 12, L., & Menon, V. (2012, Beyond natural numbers; Negative

- number representation in parietal cortex. Fromtiers i Human Neuroscience, 6073, 1-17,

“Bofferding, L. C. (20110, Expanding the numerical central conceptual structure: First graders” understanding of

integers. Doctoral dissertation, Stanford University, Stanford, CA.

: Bruner, 1.(1996}. The culiure of education. Cambridge, MA: Harvard University Press,
*Cantion, ]. ¥, & Brannon, E. M. {2007}, Basic math in monkeys and college students. PLoS Biology, 5(12).
- Case, R., Okamoto, Y., Griffin, 8., McKenugh, A., Bleiker, C.. Henderson, B., et al. {1997}, The role of central

conceptual structures in the development of children's thought. Menographs of the Socicty for Rescarch i Child
Development, 61, 1-295,

Chi, M. T HL (2005). Common sense conceplions of emergent processes: Why some misconceptions are rebust.
Journal of the Learning Sciences, 14, 161199,

-Chomsky, N. (1966} Curtesian finguistics: A chupter in the history of rationalist thought. New York, NY: Harper &

Row.

“ Cole, M., & Engestrom, Y. (1993}, A cultural-hiswrical approach to distributed cognition. In G. Salomen {Ed.3,

Distributed cogmitions, Cambridge, UK: Cambridge University Press,

Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuran, 55(2), 384--398,

de Schotten, M. T, Urbanski, M., Duffau, H., Volle, E., Levy, R, Dubois, B, et al. (20051, Direct evidence for a
parietal-frontal pathway subserving spatial awareness in humans, Science, 309(5744), 2276,

~“Fischer, M. H. (2003). Cognitive representation of negative numbers. Psychiolngical Science, 14(3), 278282,
. Ganor-Stern, D., & Tzelgov, | (2008}, Negative numbsers are generated in the mind. Experfmental Psycholagy, 553},

157-163.

.- Gibson, E. (1969}, Principles of perceptual learning and development. New York: Appleton-Centrury-Crofts.
“Glenberg, A, M. & Kaschak, M. P. {2002), Grounding language in action. Psychonomic Bulletin & Review, 9,

358-565.
Gobel, 5. M., Johansen-Berg, H.. Behrens, T., & Rushworth, M, F. {2004). Response-selection-related parietal
activation during number comparison. fournal of Cognitive Newroscience, 16(9), 1536—1551,

- Goldstone, R, L., Landy, T2, & Son, 1. Y. (2010). The education of perception. Tapics in Cognitive Science, 2, 265-284.

Gregg, L. & Gregg, 1. U, (2007}, A context for integer computation. Mathematics Teacking i the Middle School,
13(1], 46-50.

Griffin. 5. A, Case, R., & Siegler, R, 8. {1994). Rightstart: Providing the central conceptual prereguisites for first
formal learning of arithmetic fo students at risk for schoal failure, In K. McGilly {Ed.), Classroom Jessons:
Integrating cognitive theory and classroom practice (pp. 25-19). Cambridge, MA: MIT Press.

Hegarty, M. (1992). Mental animation: Inferring motion fram static diagrams of mechanical systems. Journaf of
Experimental Psychiology: Learmng, Memary and Cogrition, 18, 10841102,

Kaufmann, L., Koppelstactter, E, Delazer, M., Siedentopf, C., Rhomberg, P, Golaszewski, 5., et al, {20057, Neural
correlates of distance and congruity effects in a numerical Stroop task: an event-relaled IMR] study.
Neurofmage, 25(3), 888-898,

: Klatzky, R, L., Pellegrino, . W, McCloskey, B. P, & Doherty, 8, (1989). Can you squeeze a tomato? The role of motor

representations in semantic sensibility judgments. Journal of Memory & Language, 28, 56-77.

Rrajest, A., & Igdes, [ {2010), Processing negative numbers by transforming negatives to positive range and by sign
shortout. European Journal of Cognitive Psychalogy, 22, 10211038,

Lakoff, G., & Nufiez, R. (2000), Where mathematics cattes from: How the conbodicd mind brings mathemarics into
being. New York, NY: Basic Books.

Leach, 'T., & Scott, F. H. (2008}, Teaching for conceptual understanding: An approach drawing on individual and
saciocultural perspectives, in S. Vesniadou (Bd.) International Hendbook of Conceptual Change. New York, NY:
Routledge.

Lebrer, R., & Schauble, 1. (2000). Inventing data structures for representational purposes: Elementary grade
stuclents’ classification models, Mathematical Thinking and Learming, 2, 51-74.

Liebeck, P {(1990). Scores and forfeits: An intuitive model for integer arithmetic. Fducational Studies in
Mathematics, 213}, 221-239,

Moyer, . 5., & Landauer, 10 K. (1967}, The time required for judgments of numerical inequality. Nature, 2135,
15191520,



340 « Blair, Tsang, and Schwartz

Parkiman, L M. {1971}, Temporal aspects of digit and letter inequality judgments. Joursral of Experimental ©
Psychofogy, 91, 191-205,

Plaget, 1. (194171952}, The child’s conception of number. London, UK: Routledge and Kegan Paul,

Plaget, ). {1982). The origins of intelligence in children (M. Cook., Trans.). New York, NY: International Universities -
Press.

Pinel, P, Dehaene, S, Riviere, I, & LeBihan, D, (2001}, Modulation of parietal activation by semantic distance in -
a number comparison task Newrolminge, 14(5), 10131026,

Prather, K. W., & Alibali, M. W, (2008). Understanding and using principles of arithmetic: Operations involving ©
negative numbers. Cognitive Science, 32, 445457, :

Restle, F. (1970). Speed of adding and comparing numbers. Journa! of Experimnental Psychology, 83, 274-278.

Royer, E L. (1981). Detection of symmetry, Journal of Experimental Fsychalogy: Himan Perception and Performance,
{6}k 1186-1216,

Sasaki, Y., Vanduffel, W., Knutsen, T, Tyler, C., & Tootell, R. (2005}, Symmetry activates extrastriate visual cortex
m human and nonhuman primates. Proceedings of the National Academy of Sciences of the Unired States of
America, JU2HE), 3159-3163.

Saxe, (. B. (1981). Body parts as numerals: A developmental analysis of numeration among the Oksapinin in Papua
New Guinea. Child Development, 52{1}, 306-316.

Saxe, G. B. [1988). Candy selling and math bearning. Educational Researcher, 1716), 14-21.

Schwartz, DL, & Black, J. B.(1996). Shuttling between depictive maodels and abstract rules: Induction and failback, -
Cognitive Science, 20, 457497, :

Schwartz, D. L, Blair, K. P, & Tsang, 1. (2012). How 1o build educational neuroscience: Two approaches with
concrete instances, British Journal of Educational Fsychology Monograph Series, 8. .

Schwartz, I, L. & Holton, . {2000}, Tool use and the effect of action on the imagination, Journal of Experimental -
Psychology: Learning, Cognition, and Memory, 26, 1655-1665,

Sekuler, R, & Mierkiewicz, D. (1977). Children's judgments of numerical mequality. Child Development, 48,
630-633, o,

Shaki, 8., & Petrusic, W. M. {2005}, On the mental representation of negative numbers: Context-dependent SNARC
effects with comparative judgments. Psychonomic Bulletin & Review, 12(5), 931-937, ;

Shepard, R N., & Cooper, L, A, (Eds.}). {1986}, Mental images and their transformations. Cambridge, MA: MIT
Press. '

Spelke, E. 8. (2000). Core knowledge. Amrerican Psychologist, 55, 12331243,

Stafylidow, S., & Vosniadou, S. {2004). The development of students’ understanding of the numerical value of
fractions. Learning and Instruction, 14, 543-528. :

Tsang, L M. (2012). Learning to sce less than nothing: Symmetry in the mental representation of integers. Doctora]_.
dissertation, Stanford University, Stanford, CA.

Tsang, J. M., Rosenberg-Lee, M., Blair, K, P, Schwartz, D. L., & Menon, V., (2010, June). Near sytrumetry in a number
bisection tusk yields faster responses and greater vccipital activity. Poster presented at the 16th Annual Meeting
of the Organization for Human Brain Mapping, Barcelena, Spain. '

Tsang, J. M., & Schwartz, D, L. (2009). Symimetry in the semantic representation of integers, In N. Taatgen & H.*
van Rijn (Eds.), Proceedings of the 315t Annual Conference of the Cognitive Science Society {pp. 323-328). Austin,
TX: Cognitive Science Society.

Tzelgov, L, Ganor-Stern, D, & Maymon-Schreiber, K. {2009). The representation of negative numibers: Exploring :
the effects of mode of processing and notation. Quarterly Journal of Experimental Psychology, 62(3}, 605624,

Tyler, C. W, Baseler, H. A, Kontsevich, L. L., Likova, L. T., Wade, A. R, & Wandell, B, A, (2005). Predominantly -
exira-retinotopic cortical response 1o pattern symumetry. Nerorolmage, 24(2), 306-314, -

Varma, 5., & Schwartz, D. L. (2011). The mental representation of integers: An abstract-to-concrete shift in the
understanding of mathematical concepts. Cognition, 121, 363-385.

Vygotsky, L. 8, {1986} Thought and language (A. Kozulin, Trans.). Cambridge, MA: MIT Press.

Wexler, M., & Klam, F (7001). Movement prediction and movement production. fosrnal of Experimental’
Esychology: Human Perception and Performance, 27, 48-64. 5

Wilkinson, D 1., & Halligan, P.W. (2003). Stimulus symmetry affects the bisection of figures but not lines: Evidence -
from event-related IVRI, Neurolmayge, 2003), 1756-1764.




