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Abstract—A teachable agent (TA) is an instructional technology that capitalizes on the organizing metaphor of teaching another, in

this case, a computer agent. As one instance, students teach their agents by creating concept maps that connect nodes with relational

links. TAs use simple artificial intelligence to draw conclusions based on what they have been taught and to trace the path of their

reasoning visually. TAs literally make thinking visible, with the goal of helping children learn to reason. TAs also provide interactive

feedback and engender in students a sense of responsibility toward improving their agents’ knowledge. We describe, in detail, a TA

designed to teach hierarchical reasoning in science, and then present a 2-year research study using this TA with 153 fourth-grade

children learning about organisms, taxonomies, and ecosystems. We show that the TA improved learning from the standard curriculum

as measured by the curriculum’s accompanying tests. The TA also helped children learn hierarchical reasoning, as measured by

researcher-designed tests. The research indicates that, contrary to some theoretical positions, it is possible to help younger children

learn scientific modes of reasoning, specifically by means of TA software.

Index Terms—Computer-assisted instruction, teachable agents, instructional design, science curriculum, science education

Ç

1 INTRODUCTION

VISUAL computer simulations, or animations, show
changes over time. When used in science, they are

often designed to make otherwise invisible processes
visible (e.g., [1]). For example, they can portray changes
that are too big, too small, too slow, or too fast for the
naked eye. Simulations can further augment physical
information by incorporating the representations that
experts use to think about those processes. A physics
simulation, for example, can include vectors to indicate
momentum, magnetic fields, and so forth. Here, we go a
step further by making the expert reasoning processes visible.
We use teachable agents (TAs), a type of educational
software, to animate the thoughts an expert might use to
reason about a topic [2]. For example, using the same well-
structured representations as experts, a TA can visually
model how to reason through the hierarchies of scientific
taxonomies. This is worthwhile for novices, because
learning to emulate an expert’s reasoning may be as
important as learning the bare facts themselves. With TAs,
students learn by teaching a computer agent, and they
observe its visible thought processes while it uses what it
was taught to answer new questions.

In this paper, we present two aspects of the TAs we
design. One aspect is the set of three design principles that
we use to guide their development: a TA makes its thought
processes visible; it exhibits independent performance to
produce recursive feedback; and, it engenders social

responsibility in the student. Each design principle has
some support from the learning literature, but the main
value of TAs is that they bring these positive learning
mechanisms together into a single learning technology. We
provide a description of a TA called “Betty’s Brain” to show
an instantiation of these design principles.

The second aspect of our TAs is that they are intended to
improve students’ abilities to reason in specific ways, for
example, causally [3] or inductively [4]. As such, we use
TAs as a complement to regular classroom instruction, so
they can help students learn a reasoning schema suited to
the prescribed subject matter. We do not try to displace
classroom curriculum or create standalone instruction by
producing texts and science kits, but rather, we use TAs to
augment the curricula adopted by school districts. To show
how this can be done and to provide promissory evidence
that it is effective for relatively young children, we use the
second half of this paper to describe a research study using
Betty’s Brain with 153 fourth-graders (9-10 year-old
children) in their regular science classrooms. We focused
on helping the children reason about scientific hierarchies,
such as those found in biological taxonomies. A simple
example is that flies are a type of insect; all insects have six
legs; therefore, flies have six legs.

A perusal of many elementary-grade science standards,
for example, [5], and curricula, for example, www.lhsfoss.
org, indicates that they do not emphasize how to draw valid
inferences from known facts. While they do include many
facts, demonstrations, and advocate careful observations,
they do not explicitly teach children how to reason about
relations in science. This may be a result of influential
theoretical claims that young children cannot understand
these types of reasoning, for example, [6], [7]. Research
on children’s hierarchical reasoning, which is in focus
here, typically concentrates on the age at which children
can solve class inclusion problems of varying difficulty,
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for example, [6], [8], [9], [10], [11], [12]. For instance, studies
on children’s abilities to reason about inheritance have
typically found that roughly half of 9-10-year olds can
successfully reason using hierarchical relations [13], [14].
Such claims about developmental maturation, however,
often neglect the types of learning experiences available to
the children. They may underestimate children’s abilities to
learn to reason given appropriate instruction [15].

Here, we show that with standard instruction, 9-10-year-
old children do not learn to reason about inheritance in
taxonomies, even though it is implicit in the scientific
content they learn. Such a finding would be consistent with
the prevailing hypothesis that children of this age are too
young to learn how to draw disciplined inferences.
However, we also show that when children have an
opportunity to use a TA while learning the exact same
content, the students improve their abilities to reason about
hierarchical relations and they also learn the basic science
content more deeply. Ideally, demonstrations like this, done
in regular classroom settings with their high variability, can
motivate the improvement of elementary science education
so it incorporates scientific ways of thinking. And, the
design principles plus the example of a classroom deploy-
ment can provide guidance on how to do so effectively.

2 THREE DESIGN PRINCIPLES FOR TEACHABLE

AGENTS

A TA is a type of intelligent pedagogical agent [16] or learning
companion [17], where students teach a computer character,
rather than the computer character teaching the students.
The teaching narrative is familiar to students, and it quickly
helps to organize student-agent interactions into a teach-
test-remediate cycle. The adoption of the teaching narrative
also leverages positive results found in the learning-by-
teaching and peer-tutoring literature [18], [19], [20], [21]. For
example, people learn better when they prepare to teach
someone who is about to take a test, compared to when they
prepare to take the test themselves [22], [23]. They try
harder to organize their understanding for the task of
teaching another person than they do for themselves [24].
TAs have been used as instructional technologies to teach
qualitative causal relations in science [2], [3], hypothetico-
deductive reasoning [25], and a variety of mathematical
topics [26], [27], [28].

In creating our TAs, we rely on three main design
principles to encourage learning. We describe these
principles below and instantiate them with the example of
a TA designed to support the learning of hierarchical
reasoning. The design principles are not intended to
exclude other approaches to TA design, and there are many
creative touches that one might add that go beyond any
specific principle. These three simply reflect the features
that have asserted themselves most strongly over the past
15 years of work with many TA variations.

2.1 Make Thinking Visible

The first design principle is to make thinking visible. TAs
help students literally see the reasoning process that
their agents use to draw conclusions. In primary school
science, methods of reasoning, such as causal inference or
hierarchical inheritance, are rarely taught explicitly. Science

curricula provide instances or demonstrations of phenom-
ena that have causal or hierarchical relations, but the
methods for reasoning about these relations are implicit.
This means that students can learn the relevant facts and
pairwise relations, but they may still not be able to reason
with them very well. This problem is exacerbated by the
fact that reasoning is largely invisible and it is difficult to
induce reasoning processes through the observation of the
teacher’s behaviors [29]. Collins et al. [30] have proposed
that sustained cognitive apprenticeships can help reveal
patterns of thinking to novices. This is a heavy solution that
requires displacing extant curricula with a cognitive
apprenticeship curriculum. We take a lighter approach.
We use TAs to make the thinking visible. So, rather than
showing the scientific phenomenon, for example, through a
science simulation, a TA simulates thoughts about the
phenomena by tracing its reasoning visually.

Fig. 1 shows an instantiation of this design principle in
the interface of the TA used to teach hierarchical reasoning.
This TA is a variant of Betty’s Brain [2]. The original version
of Betty’s Brain focused on helping students learn to
construct and reason through causal chains. In response
to curricular needs for younger children, we have more
recently created Taxonomy Betty, which focuses on hier-
archical reasoning and the learning of properties, classes,
and class inclusion rules.

To teach an agent, students build the agent’s brain using
a concept map formalism [31], adding nodes and relational
links. In Fig. 1, a student is teaching the agent about a food
web and the properties of various classes of organisms. To
add a concept, the student clicks on “Teach Concept,”
which produces a textbox in which the name of the node is
entered. To create a link, the student clicks on “Teach Link”
and draws a line connecting two nodes. Next, a palette
appears that asks the student to specify the kind of
relationship desired, which for Taxonomy Betty can be a
“type-of” or “has-property” link.

Once the student has taught the TA enough nodes and
links, the student can ask the agent a question, and it can
answer. Using generic artificial intelligence techniques, the
TA can chain through the map it has been taught (see [2]),
tracing its reasoning by progressively highlighting the links
and nodes it traverses. This explicitly renders the thinking
visible. In Fig. 1, the student has asked the TA, “Does a hawk
have the property of eats for food?” The TA highlights
successive links in its concept map (shown in blue) to
show the entire hierarchical chain from “hawk,” up to
“carnivore,” up to “consumer,” and finally linking to the
property “eats for food.” To complement its graphical
reasoning, the TA also unfolds its reasoning in text (lower
left panel). The graphical rendering of relational reasoning
differentiates Betty’s Brain from other TAs, for example,
[27], [28], [32], that show the results of their reasoning, but
do not graphically show how the TA reached its conclu-
sions. Our TAs always reason correctly, which also
differentiates them from other TAs that may exhibit faulty
reasoning that students need to “debug,” for example, [27].
Despite a TA’s valid reasoning, it can still reach wrong
answers if the student has taught it incorrect links and
nodes. As students track down their mistakes, they trace
their agent’s correct reasoning (but with the wrong facts),
which in turn helps them learn to reason. For example, in
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one study, 11-12-year-old students worked with a causal
reasoning version of Betty’s Brain to map out river
ecosystems [33]. In one condition, students simply created
their concept maps. In a second condition, students could
quiz their agents and see the reasoning. Over time, students
in the latter condition included more causal links in their
maps. Similarly, in another study [3], we compared the
value of TAs versus a popular concept mapping program,
Inspiration (www.inspiration.com). Students in both condi-
tions were taught to make causal links of the form “an
increase/decrease in X causes an increase/decrease in Y.”
Inspiration students made a map like the TA students, but
the Inspiration software could not reason over the map.
Students in the TA condition better learned to reason
through causal chains than the students in the Inspiration
condition. These two studies did not parse out the relative
contributions of feedback versus dynamic visualizations of
reasoning, but rather, the studies indicated that together
these two features work well for learning. In the study
described here, we show that Taxonomy Betty has a similar
learning benefit for reasoning through hierarchical chains.

2.2 Enable Independent Performance and
Recursive Feedback

The second design principle is to ensure a TA can perform
independently. Rather than designing an instructional
system where students answer all the questions, we create
a system in which the computer agent also has to answer
questions on its own. The ostensibly independent perfor-
mance of the TA helps sustain the narrative of teaching. It
also generates a unique kind of feedback that we call
recursive feedback. The term is based on Premack’s proposal
[34] that only humans teach, because only humans have the
unique capacity of recursive thought—the capacity to
constitute a thought as a function of itself (“I think that

you think that I think...”). In the case of TAs, students
constitute the thoughts of their TAs as a function of their
own thinking. By observing how a TA answers and reasons
with its map, a learner receives recursive feedback based on
the TA’s performance. This form of feedback has proven
valuable as an inducement to reflect over the agent’s
thoughts, and by recursion, one’s own thoughts [32].

Okita and Schwartz [35] tested the value of TAs’
independent performance and recursive feedback com-
pared to direct feedback. They used a TA designed for
learning inductive and hypothetico-deductive reasoning.
High-school students played a game with multiple levels,
and on each level they had to induce a rule from available
evidence and then express the rule. The rules became
increasingly complex across the levels, so that the top levels
had rules such as, “The presence of rain and the absence of
fire is necessary but not sufficient for flowers to grow.” To
pass a level, students further played a prediction game in
which they used the rule they had induced. The experi-
mental difference was that students in one condition played
the prediction game themselves and received direct feed-
back. Students in a second condition saw their agent play
the game using the rule they had expressed earlier. On a
post-test of inductive and hypothetico-deductive reasoning,
students who received the recursive feedback of watching
their agents play did substantially better than students who
received direct feedback from their own game play.
Presumably, one source of the effect is that students could
reflect on their TA’s thoughts as it made decisions, which
should lead to deeper cognitive processing than simply
noting that one’s own answer was right or wrong. Thus, to
maximize the value of a TA’s independence, it is useful to
ensure that the students see the feedback generated by their
TA’s performance.

CHIN ET AL.: YOUNG CHILDREN CAN LEARN SCIENTIFIC REASONING WITH TEACHABLE AGENTS 3

Fig. 1. The main interface for making a TA’s thinking visible.



For the current TA, Fig. 2 shows two separate mini-
environments designed to enhance opportunities for
recursive feedback. Panel (a) shows a quiz feature.
Students can submit their TAs to take a quiz, and the
system uses a hidden “expert map” or answer-key to check
the agents’ answers and give the students feedback on how
well their agents performed. Panel (b) shows a Jeopardy-
like game called Triple-A-Challenge. Students can enter
their agents in the game and see how well their agents
perform. A retrostyle host uses the hidden expert map to
both generate questions for the agents and evaluate
answers. Two additional game elements are intended to
further encourage student reflection on what their agents
understand. One element allows students to choose the
amount of their wager, depending on whether they think
their agents will answer correctly. A second element allows
students, as they progress through the game, to pit their
agents against smarter house agents that are more difficult
to outperform or choose harder questions that involve
longer chains of reasoning.

2.3 Engender Student Responsibility for the Agent

The third design principle is to engender students’
responsibility toward their TAs. Enlisting social schemas
can enhance people’s investment in their interactions with
computers [36]. Determining how to do this well is a major
component of learning companion research [37]. With
respect to TAs, a sense of responsibility to one’s agent can
lead to improved learning for students. Chase et al. [24]
demonstrated the protégé effect—students worked harder
to learn more on behalf of their agents than they would for
themselves. Students in a Teach condition were told the
agents were their pupils, and to use the software to teach
their agents. Students in the Self condition were told that
the characters represented themselves, and they were just
using new educational software. Thus, the only manipula-
tion was the narrative of teaching. Students in the Teach
condition spent nearly twice as long reading about the
topic they were teaching compared to the Self students.
One speculation for why TAs helped was that when
students’ agents gave the wrong answer, students had an
“ego-protective buffer”—their TAs got it wrong, not them.
This was especially true for the lowest achieving students
in the classes. Despite common beliefs that feedback is
always good, for lower achieving students, negative feed-
back can trigger ego-involvement such that students make

negative attributions about themselves, rather than using
the feedback to improve task performance [38]. Evidence
for an ego-protective buffer was found in the students’
statements following correct and incorrect answers during
game play. This ego-protection allowed Teach students to
persist longer, compared to the Self students, who had to
take full blame for getting wrong answers.

The overarching narrative of TAs enlists the familiar
social schema of responsibility toward one’s pupils. To
further enhance responsibility, the TA system requires that
students name and customize the look of their agents, as
shown in panel (a) of Fig. 3. The Triple-A-Challenge game
show is also embedded in a larger environment shown in
panel (b). Students can earn hearts and fish when their TAs
win in the game show. They can then redeem the hearts and
fish to release new customization options, allowing them to
further individuate their agents. There are, of course, other
ways to increase the sociability of agents, including more
sophisticated dialog systems, more advanced graphics, and
placing the TAs in a social environment with other agents
(e.g., [37], [39], [40]).

3 DEMONSTRATION EXPERIMENT

Given the three design principles and the description of the
TA environment, we now turn to the second component of
the paper—a demonstration of using TA to improve
students’ hierarchical reasoning. We describe a classroom
study that used Taxonomy Betty with fourth-graders (9-10-
years old), replicated over 2 years.

At this age, school science includes a number of topics
that involve classification. However, typical instruction
rarely models the appropriate kind of reasoning for class
inclusion relations and does not provide tests that directly
evaluate this type of reasoning. We thought that having
students tutor Taxonomy Betty would help them focus on
thinking per se.

Fig. 4 may help clarify how the three design principles
could be especially helpful for students learning hierarch-
ical reasoning. The figure provides a simple schematized
example of a good and bad map on the left, and how the
agent would indicate its reasoning on the right. First, take
the case of a fictitious student who does not have this
visualization, but instead, answers a question from a
flashcard-like computer program that presents questions
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and offers right/wrong feedback. Imagine the student
enters a correct answer to the question of whether a
ladybug has six legs. She could have achieved this correct
answer based on direct memory of the fact that ladybugs
have six legs, or she might have guessed the right answer,
both of which are undesirable when the goal is learning to
reason about taxonomies. In contrast, consider a student
who has been working with Taxonomy Betty and produced
the good map in the left panel of Fig. 4a. The right panel
shows how the student can visually follow along as the TA
figured out the answer by connecting ladybug to insects,
which have six legs. TA students see how they are
supposed to figure out the answer and how to organize
their knowledge. This is a simple example of the first design
principle to make thinking visible. Hierarchical reasoning is
particularly easy to make visible, so it should be an ideal
application of TA. One could also imagine a TA version that
uses Venn or Euler diagrams to show nested relations,
instead of nodes and labeled links, and these alternative
visualization schemes could also work quite well.

Next, take the opposite case where the flashcard student
gives an incorrect answer to the question and receives
negative feedback that she is wrong. It would be hard for
her to figure out the mistake, because she is trapped by her
own thoughts—after all, she thought her answer was right
to start with. In contrast, consider a TA student who had

produced the bad map in Fig. 4b. The right panel shows
how the student can see the implications of how he
organized his agent’s knowledge and how the map interacts
with the agent’s proper reasoning behavior. This enables
TA students to reflect explicitly on the reasoning process
and notice how their knowledge organization led to the
wrong conclusions. This is an example of the second
principle to provide recursive feedback through indepen-
dent performance. Students see how someone else reasons
about their knowledge, in this case a TA, which presumably
helps them clarify their own knowledge and reasoning.

Finally, consider again the case where the flashcard
student gets the wrong answer and receives negative
feedback. It is an important metacognitive strategy to use
negative feedback as a chance to learn. Nevertheless,
negative feedback often causes students to avoid the
situation that generates the feedback [41]. To mitigate this
problem, TA provides students with an “ego-protective”
buffer—the wrong answer can be attributed to the agent, so
the student does not shy away from the negative feedback.
To motivate students to use the feedback and help their
agent, it further helps to catalyze the student’s sense of
responsibility. Hence, the third principle: engender stu-
dents’ responsibility to the agent.

Despite our thought experiment and rationale for the
design principles, it is also possible that TAs do not help at
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all. The visual representation may just bring more complex-
ity, the recursive feedback may be obscure because it was
not the student’s own answer, and the students may feel
less responsible to their agents than they do to their own
understanding. Moreover, there is the question of whether
simply adding TAs to an extant curriculum will be so
incongruous and distracting that it interferes with the
intended trajectory of the curriculum. We have reasons to
believe this is not the case. Earlier versions of TAs, based on
the same design principles, have been successful in helping
older science students learn to think in terms of causal
relations. For example, in one series of studies, Chin et al.
[3] found that TAs helped late primary and middle school
students use causal reasoning better on subsequent lessons
involving a different science topic, even when the students
were no longer using the TA system. These studies involved
children in the 10-12-year-old range, and the TA modeled
causal chaining. Here, we moved to a younger age, and we
reprogrammed the TA so it showed how to reason about
taxonomies. Thus, a major goal of the research was to
determine whether the TA platform would generalize to
help younger children learn, and whether it could general-
ize to teaching another type of reasoning, in this case,
hierarchical reasoning.

The research was not an attempt to isolate any single
factor of the TA system with strict controls on implementa-
tion, but rather to see how the system as a whole would fare
when used in regular classrooms with teachers who could
choose to use it as they wanted. Our hope is that the TA
design principles work despite reasonable variation in
teacher implementation.

In the current study, control students completed the
standard practice of the school district, whereas the TA
students completed the standard practice plus the TA. The
total amount of instructional time was the same for both
treatments. We included two types of learning measures.
One measure was the test that came with the curriculum.
We will label this the “basic-value” measure, because it
measures the value of the extant curriculum on its own
terms. We will label the second measure “added-value,”
because this was researcher-designed to see if TAs would
improve children’s abilities to reason through taxonomies.
Our leading hypothesis was that an emphasis on hierarch-
ical reasoning would not only improve performance on our
added-value measures, but it would also improve student
understanding of the scientific content per se, as measured
by the curriculum’s own basic-value measures. This would
demonstrate that teaching scientific reasoning at this age is
useful, and that TAs are one recipe for success. An
alternative hypothesis is that the time spent with TAs
would unproductively displace time spent learning the
basic science, and therefore the students using TAs would
do worse on the basic-value test, regardless of their
performance on the added-value measures.

3.1 Methods

3.1.1 Participants

A small, public school district agreed to use the TA
technology to complement their regular, kit-based science
curriculum in the fourth-grade. The district is high SES,
with a reported 4 percent socioeconomically disadvantaged
population, 7 percent English learners, and ethnicity of
71 percent white, 7 percent Asian, 6 percent Hispanic,

2 percent African American, and 14 percent other/not
reported. A total of seven classes participated in our study
over 2 years. District officials called for voluntary participa-
tion. In the first year, two teachers (Teachers A and B)
agreed to use TAs with their students (n ¼ 49). They
integrated TAs into their regular science lesson plans
(Kit+TA condition). Two other teachers (Teachers C and
D) volunteered as control classrooms (n ¼ 34) and con-
ducted their science lessons as they normally would during
this same time period (Kit-Only condition). The study was
replicated the following year using the same two Kit+TA
teachers (n ¼ 46), while a new teacher volunteered as a Kit-
Only teacher (Teacher E, n ¼ 24). All told, there were two
treatment teachers who were sampled twice, and three
control teachers each sampled once. We recognize the
unavoidable confound of allowing teachers to self-select
into treatment, and discuss this in the Results.

3.1.2 Materials

The district-adopted science curriculum is the Full Option
Science System (FOSS), developed by the Lawrence Hall of
Science (www.lhsfoss.org). FOSS kits come complete with
teacher guides, textbooks, videos, hands-on activities,
worksheets, and assessments. The FOSS curriculum used
in this study was the Environments kit, which focuses on
organisms and ecosystems, and is rich in class inclusion and
property relations.

To tailor TA for an extant curriculum, the only
requirement is that the teacher, curriculum specialist, or
researcher produces the relevant hidden answer-key or
“expert” maps. The hidden expert maps allow the TA
system to generate questions and feedback for the agents. In
this case, the FOSS Environments kit contains five subunits,
and we produced four hierarchical expert maps for the
curriculum. Figs. 5a and 5b show the expert maps for two
subunits: the relatively simple, introductory map on
terrestrial environments (13 nodes and 12 links), and then
a much more complex map for the third subunit on food
energy webs (30 nodes and 29 links). The Kit+TA students
did not see these maps, but instead, for each map, they
received the nodes, unconnected at the bottom of the screen.
Their task was to teach their agents by connecting the
nodes. Figs. 5c and 5d show sample student maps matched
for the same subunits. (The Kit-Only students never
explicitly received a list with the nodes, however, most of
the nodes were the concepts bolded in the FOSS textbook
and highlighted in the chapter summaries and glossary.)

Learning gains were measured with identical pre- and
post-tests. The basic-value test is packaged with the FOSS
kit and includes 10 multiple-choice, fill-in, and short-
answer questions. (Actual questions may be purchased
from FOSS.) The two added-value measures were specifi-
cally designed by us to probe for hierarchical reasoning.
Examples of two basic- and all the added-value items are
in Table 1.

The added-value measures were designed to evaluate
whether students would, without specific prompting, use
hierarchical relations to organize their answers, just as their
TAs had visually modeled for them. The first added-value
item (“What is a ladybug?”) was deliberately open-ended.
The expectation was that Kit+TA students would sponta-
neously provide more hierarchical class and property

6 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. X, XXXXXXX 2013



information (this item was coded separately for both types

of information). The second added-value item (“Write these

words in the boxes below...”) was intended to elicit the

conceptual organization students had developed.
All measures were coded with a rubric and used the

scale: 0 points (incorrect/no answer), 1/2 point (partially

correct), or 1 point (correct answer). Inter-rater reliability

between two coders (one blind), was r > 0:93 for both basic

and added-value tests using a random sample of 25 percent

of all responses. Cronbach’s alpha for reliability across all

measures was 0.81.
Additional measures collected include students’ standar-

dized achievement scores (STAR assessments, www.cde.

ca.gov/ta/tg/sr/) for English language arts (ELA) and

math, taken from both the year before and the end of the

year during which students were in the study.

3.1.3 Design and Procedures

The research design had the between-subjects factor of

instructional treatment (Kit+TA versus Kit-Only). It also

had the within-subjects factor of time (pre- versus post-test)

that was measured on two test types (basic- and added-
value).

Overall, the instruction lasted approximately eight weeks
for each teacher, fitting the timeline of the school district.
Kit-Only teachers used the kit as they normally would in
this period, without interference from the researchers other
than the addition of added-value questions for the pre-post
assessments. Researchers trained Kit+TA teachers on the
TA software in one-on-one sessions prior to the first lesson.
On the first lesson day, to ensure that all students received
the same social narrative of teaching their agent, researchers
introduced Kit+TA classes to the software and showed
students how to “take responsibility” for their agents by
first customizing them (see Fig. 3a), then teaching and
quizzing them (see Figs. 1 and 2a). Subsequently, research-
ers only provided technical and classroom support to
teachers as requested, in particular, the introduction of the
game element (see Fig. 2b). Kit+TA teachers were asked to
use the TA system with their students at least one time for
each of the four concept maps. They did not add more days
to the overall instructional time to accommodate the TA
activities. Otherwise, we did not prescribe how or when to
use TAs for each concept map, because we wanted to see if
TAs would be effective within the variations of the teachers’
self-chosen integration into the regular instruction.

Over the course of the unit, TA students logged into the
system an average of 9.6 times (SD ¼ 4:7), made 167.4 map
edits (SD ¼ 56:8), had their agents take 34.1 quizzes
(SD ¼ 19:3), accessed the online reading resources 35.4 times
(SD ¼ 25:1), and played 21.7 games (SD ¼ 19:7). Observa-
tional records indicated that the two Kit+TA teachers had
different patterns of usage. Teacher A tended to control
system use, limiting TA sessions to near the end of the
subunits as checkpoints, and emphasizing the quizzes to her
students as a valuable form of feedback on the quality of
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their agent and their teaching. Teacher B was more free-
form, interspersing TA sessions more frequently through-
out the unit, and allowed her students more unconstrained
access to the software, valuing the more social elements of
the software, for example, the game show, as ways to
engage her students. Univariate tests of the log data files
supported these observations. Teacher A’s students quizzed
their agents more, F ð1; 93Þ ¼ 14:6, p < 0:001, and teacher B’s
students logged on more, F ð1; 93Þ ¼ 63:2, p < 0:001, and
played more games F ð1; 93Þ ¼ 52:9; p < 0:001.

3.2 Results

3.2.1 Learning Gains

Prior to the instructional experiment, the students in the two
conditions had statistically indistinguishable scores for
ELA, math achievement, and added-value measures, all
F ’s < 0:8. The Kit-Only (control) students, however, started
significantly higher on the basic-value measures, F ð1; 140Þ ¼
5:2; p ¼ 0:024, as shown in Fig. 6. Even so, after instruction,
the Kit+TA students outperformed the Kit-Only students for
both basic- and added-value measures.

For the first statistical analyses, we only use those
students for whom we have complete data and we exclude
students from one of the control classes (year 1) that did
not take the basic-value post-test. The basic- and added-
value scores were entered as doubly repeated measures in
a treatment (Kit+TA versus Kit-Only) by time (pre- versus
post-test) repeated measures analysis. There was an overall
effect of time; F ð2; 130Þ ¼ 113:3; p < 0:001. Students im-
proved on both the basic-value measures F ð1; 131Þ ¼ 197:3;
p < 0:001, and the added-value measures F ð1; 131Þ ¼ 64:9;
p < 0:001. There was also an overall effect of treatment;
F ð2; 130Þ ¼ 9:7; p < 0:001. More importantly, there was a
significant time x treatment interaction; F ð2; 130Þ ¼ 21:9;
p < 0:001. The Kit+TA students improved more on both
measures; basic-value F ð1; 131Þ ¼ 32:8; p < 0:001; added-
value F ð1; 131Þ ¼ 19:0; p < 0:001. The effect sizes for the
learning gains of the Kit+TA condition over the Kit-Only
condition were d ¼ 1:1, and d ¼ 0:93 for the basic- and
added-value measures, respectively.

Teacher C did not administer the basic-value post-test,
and was not included in the preceding analysis. A separate
analysis reincorporated the added-value data for this
control class with the other classes and yielded similar
results. There was a main effect of time, F ð1;146Þ ¼ 76:1;
p < 0:001, and treatment, F ð1;146Þ ¼ 13:6; p < 0:001. The
key time x treatment interaction was also significant,
F ð1;146Þ ¼ 29:1; p < 0:001. (When including the third con-
trol class into the added-value means (not shown in Fig. 6),
the values did not change appreciably, Mpre ¼ 0:21; SE ¼
0:02, and Mpost ¼ 0:29; SE ¼ 0:03.)

The preceding analyses combined the two cohorts to
increase the overall sample size. One may also interpret
cohort 2 as a second study (albeit with the same Kit+TA
teachers). To determine if the results replicated from cohort
1 to cohort 2, we added cohort (year 1 versus year 2) as a
between-subjects variable. Treatment was the second
between-subjects variable, with time and test-type as
within-subject measures. The cohort factor did not interact
at any level with the time factor, all F ’s < 1:5, and the other
findings held up. This indicates that the key time �
treatment interaction replicated over both years and for
both measures.

3.2.2 Transfer of TA’s Concept Map Formalism

Our assumption (and intended design) is that students
entrain on the graphical way that the TA organizes
information and reasons. To examine this assumption, we
coded for the spontaneous inclusion of hierarchy-relevant
spatial information on added-value item 2 (see Table 1).
Fig. 7 provides two positive examples.

None of the Kit-Only students incorporated spatial
information in their answers, whereas 13 percent of Kit-
TA students did, �2ð1;N ¼ 150Þ ¼ 8:2; p ¼ 0:004. While
13 percent is modest, the question did not explicitly require
this information. At the least, this result may be interpreted
as an indication that the TA system helped some students
incorporate visual or spatial organizations of hierarchies
into their repertoire of cognitive skills.

3.2.3 Teacher Effects

Due to the wishes of the school district, we could not
require teachers to participate nor randomly assign them to
treatment. Teachers who self-selected to the Kit-TA condi-
tion may have caused the treatment differences rather than
Taxonomy Betty. While this cannot be definitively refuted
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Fig. 6. Average performance on assessment items—six classes
represented, 95 percent C.I.’s on means.

Fig. 7. Examples of student post-test answers, added-value item 2.



by the current research design, there are three lines of
evidence that mitigate the concern.

First, all four of the Kit+TA classes showed greater
learning gains than all three of the Kit-Only classes.
We computed percent of possible gain (100 � (post-pre
mean item score)/(1 � pre mean item score)). For added-
value measures, the TA classrooms had gain scores of 40.5
percent, 45.8 percent (year 1), and 43.1 percent, 36.4 percent
(year 2). The control classrooms had added-value gain
scores of 1.3, �10:1, and 16.5 percent. For basic-value
measures, the TA classrooms had gain scores of 43.5 percent,
44.5 percent (year 1) and 49.8 percent, 40.1 percent (year 2).
The control classrooms exhibited basic-value gain scores of
18.7 and 20.4 percent (one teacher did not give the basic-
value posttest). By these nonoverlapping distributions, the
effect of treatment is substantially larger than the effect of
teacher (or year) within each treatment.

Second, the Kit+TA teachers were not better teachers
based on California’s standardized tests. These tests are
administered yearly to evaluate how much teachers are
helping students gain over the prior year, among other
things. A doubly repeated measures analysis crossed time
of test (incoming versus outgoing) by treatment (Kit-Only
versus Kit+TA) using both ELA and math achievement
scores. There was no treatment effect, F ð1;141Þ ¼ 0:81;
p ¼ 0:37, and no treatment x time interaction (all F’s <
1:94). By these measures, there is no evidence that TA
teachers were just better teachers.

Third, the two Kit+TA teachers had very different
approaches to how they used the system, as summarized
in Section 3.1.3. For example, subsequent analyses of the log
files showed that number of map edits correlated with
learning gains for Teacher B, who allowed children more
choice in how to use the system, but not for Teacher A, who
exerted more control over student activity. Yet, their
students exhibited similar learning gains. This means that
the teachers who self-selected to the TA condition were not
uniform in implementation, yet all their classes did better
than the control classes.

4 CONCLUSION

TAs provide the overarching metaphor and core mechanic
of teaching as a means for learning. We provided three
design principles for creating TA systems: making thinking
visible, enabling independent performance and recursive
feedback, and finally, engendering a sense of social
responsibility toward the agent. Each of these principles is
based in research from the learning literature, but the main
value of TAs is that they can bring a harmonious confluence
of positive learning mechanisms together into a single
learning technology.

We also described the results of a demonstration study
that implemented TAs in regular 4th-grade classrooms as a
complement, rather than replacement, for current curricu-
lum. We allowed teachers to use TAs as they wished, so we
could gather some initial evidence on whether TAs could
handle variation in “real world” classroom implementa-
tions. When integrated into the school’s kit-based science
curriculum, all TA classes exhibited greater learning gains
by both the kit’s own measures and by our measures of
hierarchical reasoning. So rather than displacing the value

of the original curriculum, the results suggest that TAs
provided a way for students to organize the facts they
learned from the science kit, which had a leveraging effect
on how much they learned overall from the kit lessons.

Teachers’ self-selection into the experiment and their
specific treatment created an unavoidable confound to our
study. We did not find evidence to support the alternative
hypothesis that the results of the study were due to teacher
effects rather than treatment effects, although it is still
possible. A second class of alternative hypotheses involves
novelty effects. Perhaps it was simply the general presence
of technology in the classroom, rather than TAs specifically,
that enhanced children’s motivations or classroom experi-
ence and led to their learning gains. This seems unlikely to
be a full account of the differences because specific aspects
of system use (number of map edits) correlated with
learning gains. Additionally, the spontaneous transfer of
hierarchical thinking on the post-test is selective to the
precise relations that the TAs modeled. A nonspecific
“halo” effect should not show these patterns.

Another possibility is that the Kit+TA teachers may have
been more enthusiastic about using technology in their
classrooms, which is why they self-selected to the TA
condition. If this caused the gains, then a reasonable
conclusion is that TAs are successful when implemented by
teachers who are enthusiastic about their use.

At a minimum, our results indicate that it is possible to
improve younger students’ hierarchical reasoning, which
also leads to better learning of the science content itself. This
provides an argument for including scientific reasoning in
the primary-school curriculum. At a maximum, our results
suggest the value of creating additional TAs that visually
model other forms of age-appropriate reasoning, ranging
from legal to statistical to metacognitive. The three design
principles offer suggestions for going forward.
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