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It is human nature to create dichotomies—mine versus yours, 
hot versus cold.  Dichotomies usefully structure and simplify 
the world. They can also lead people astray. Aesop’s fable of 
The Satyr and the Man captures this risk: 

A Man was walking in the woods on a very cold night. 
A Satyr came up to him. The Man raised both hands to his 
mouth and kept on blowing at them. 

“What do you do that for?” asked the Satyr. 
“My hands are numb with the cold,” said the Man, “and 

my breath warms them.” 
Later, the Satyr saw the Man again. The Man had a bowl 

of steaming soup. The Man raised a spoon of soup to his 
mouth. He began blowing upon it. 

“And what do you do that for?” asked the Satyr. 
The Man said, “The soup is too hot, and my breath will 

cool it.” 
The Satyr shouted, “The Man blows hot and cold with the 

same breath!”
The Satyr ran away. He was afraid the Man was a demon.

Each pole of the dichotomy contains a truth—the man’s 
breath warmed his hands and cooled his soup. The problem is 
that the satyr treated the categories of hot and cold as mutu-
ally exclusive and did not seek a deeper analysis. Instead, 
he became agitated and fled the possibility of a unifying 
explanation.

Education has produced its share of dichotomies: abstract 
versus concrete, memorizing versus understanding, teach-
er-centered versus student-centered, authentic tasks ver-
sus decomposed practice, efficiency versus innovation, 
and many more. Often the categories of such dichotomies 
become mutually exclusive alternatives, and people advocate 
for one versus the other. Since at least the behaviorism of 

B. F. Skinner (1986), scholars have argued whether discovery 
or entrainment is better for learning (e.g., Kirschner, Sweller, 
& Clark, 2006; Tobias & Duffy, 2009). The so-called math 
and reading wars are strong examples of heated polarization 
in education. 

More prevalent and less extreme than heated debates, 
people simply accept the definition of one category as the 
negation of another, as in the case of active versus passive 
learning. People do not flee like the satyr, but they do not 
seek a deeper analysis either. On deeper analysis, familiar 
categories of learning, often taken as mutually exclusive, 
have underlying mechanisms that can make them comple-
mentary. So rather than choosing one or the other, the best 
strategy is to choose both. 

The chapter follows a central thesis: A major task of 
teaching and instruction is to help learners coordinate catego-
ries of cognitive processes, capabilities, and representations. 
While nature confers basic abilities, education synthesizes 
them to suit the demands of contemporary culture. So, rather 
than treating categories of learning and instruction as an 
either–or problem, the problem is how to coordinate learning 
processes so they can do more together than they can alone. 
This thesis, which proposes a systems level analysis, is not 
the norm when thinking about teaching and learning. More 
common is the belief that learning involves strengthening 
select cognitive processes rather than coordination across 
processes. Our chapter, therefore, needs to develop the argu-
ment for learning as coordination. To do so, we introduce 
findings from the field of cognitive psychology. 

Cognitive psychology focuses on the mechanisms of 
mind and brain that determine when and how people solve 
problems, make decisions, interpret situations, remem-
ber, learn, and adapt. There are many reviews of cognitive 
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psychology as it relates to education (e.g., Koedinger, Booth, 
& Klahr, 2013; Pashler et al., 2007). There are also cogni-
tively minded books for education (Bransford, Brown, & 
Cocking, 2000; Mayer, 1987), cognitive psychology text-
books (Anderson, 2000), and excellent free online resources 
(www.learnlab.org/research/wiki/index.php/Main_Page). 
These all introduce the central constructs of cognitive psy-
chology, including attention, different forms of memory, 
expertise, problem-solving strategies, schemas, and more. 
Many topics originally investigated by cognitive psychology 
have matured to the point that they now have their own chap-
ters in this Handbook and do not need further coverage here 
(e.g., see Chapters 9 and 15). Therefore, the goal of the pres-
ent chapter is not to provide an encyclopedic review. Instead, 
the primary goal is to provide framing and examples for how 
to view learning from a cognitive perspective that is relevant 
to questions of teaching and instruction ranging from reading 
to math. A second goal is to introduce cognitive neurosci-
ence, which is increasingly a part of the cognitive psychol-
ogy tool kit. We show where neuroscience can complement 
behavioral analyses. 

The first section of the chapter considers the natural 
human tendency towards categorization with a special focus 
on reconsidering one of the most influential categorical 
frameworks in education—Bloom’s taxonomy. The next 
section presents a view of the mind and brain that helps to 
indicate why mutually exclusive categories of learning are 
problematic. The third section presents the heart of the the-
sis: A major goal of school-based instruction is to help learn-
ers coordinate different cognitive processes in the service of 
cultural goals such as being able to read. The section is popu-
lated with examples from research on the teaching and learn-
ing of math and reading. The remaining sections provide two 
examples of common dichotomies, including memorization 
versus understanding and concreteness versus abstraction. 
The examples provide a glimpse into how cognitive pro-
cesses that putatively occupy the poles of a dichotomy can 
work in concert. The conclusion considers dichotomania 
more generally and offers a tentative prescription.

Categorical Thinking and Education

Before developing our alternative to dichotomous thinking, 
it is worth understanding the power of categories and bound-
aries, which make dichotomies possible. Boundaries appear 
throughout cognition. At the lowest levels, vision has dedi-
cated neural circuitry that detects the edges that separate one 
object from another. Rainbows present to us a continuous 
range of wavelengths, yet we tend to see rainbows as con-
sisting of seven distinct bands of color. At the highest levels, 
people intentionally impose boundaries. Political systems 
depend on fabricated social boundaries that often become 
physical ones. Creating boundaries is fundamental to the 
human experience (Medin, Lynch, & Solomon, 2000) and 
reaches from basic perception to cultural organization.

Categories follow from boundaries; they collect those things 
that fall within a physical or conceptual boundary. Categories 
simplify and stabilize an otherwise ever-changing world. 

The category of “self” applies during dinner and when waking 
up, even though one is quite different at those two time points. 
Without categories, experience would be a flow of inchoate 
sensations without organizational structure. Once categories 
are fixed mentally, people de-emphasize differences among 
members of a category, and accentuate differences across cat-
egories (Goldstone & Hendrickson, 2010; Harnad, 1997). 

Language is an important contributor to category forma-
tion (Borodistky, 2001; Lupyan, 2008). When speaking, it 
is impossible to convey the totality of experience and all the 
subtle variations one might be experiencing right now at this 
very second. Language fixes the flow of experience into cat-
egories. Through language, people can reflect upon and com-
municate categories. Lawyers’ carefully worded statements, 
political platforms, and the movement toward non-sexist and 
non-discriminatory language are all motivated by the realiza-
tion that the words we use do not just label our experiences, 
but also shape and warp these experiences. Being labeled as a 
member of a category, by a stereotype for instance, can have 
large effects on how people experience and perform in the 
world (Steele, 1997). Humans create categories, and catego-
ries create humans (McDermott, 1996).

Given their centrality in human thought, categorization 
schemes can be extremely powerful. An important goal of 
education is to help students learn cultural and scientific cate-
gorization schemes (e.g., republics, taxonomies). Categories, 
even imperfect ones, can advance science. They offer ini-
tial hypotheses that drive research that may even eventually 
replace the original categories. On the negative side, once a 
categorization scheme is in place, it can be difficult to dis-
place. It took over a thousand years to overhaul the catego-
ries of Aristotelian physics with the modern conception of 
force. People still spontaneously develop Aristotelian cate-
gories to understand physical phenomena, and it takes sub-
stantial instruction to displace those naïve misconceptions 
(Hestenes, Wells, & Swackhamer, 1992).

Bloom’s taxonomy of educational outcomes (Figure 5.1) 
provides an example of the strengths and weaknesses of 
categorization schemes (Bloom, Engelhart, Furst, Hill, & 
Krathwohl, 1956). On the positive side, the taxonomy was a 
brilliant effort to create an assessment framework. It helped 
educators focus on a more differentiated set of outcomes than 
the coarse observation that a student “learned.”  The taxon-
omy describes a pyramid of the following order, going from 
bottom to top: memory (called “knowledge” back then), 
comprehension, application, analysis, synthesis, and evalu-
ation. More recently, some scholars have put in a new top 
layer, labeled creativity. The pyramid was seminal in point-
ing out that there are learning outcomes that go beyond the 
repetition of behavior, which was the prevailing behaviorist 
perspective at the time. 

On the negative side, many people interpret the catego-
ries as forming a prerequisite structure. Students must first 
learn the lower-order skills at the bottom of the pyramid 
(memory), before engaging in the skills at the top of the 
pyramid (evaluation). This interpretation fuels a back-to-
basics mentality, so that students should memorize before 
trying to apply their learning usefully. However, the science 
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of learning does not support this interpretation. For exam-
ple, comprehension occurs above memory in the taxonomy, 
but people can remember ideas better when they compre-
hend them (Bransford & Johnson, 1972). Making memories 
a prerequisite for comprehension does not work very well. 
Similarly, having students learn a new topic in an application 
context is a useful way to help them simultaneously learn 
the facts and evaluate their applications (Barron et al., 1998). 

Bloom’s taxonomy neatly captures the strengths and 
weaknesses of categorizations in education. It is a compelling 
and intuitive categorization scheme, and as such, it has had 
tremendous influence on practitioners and scientists alike. 
At the same time, it has been difficult to change, despite 70 
years of subsequent research that challenges the pyramidal 
structure. Moreover, people use the categories in ways that 
violate their intent. Bloom’s taxonomy is an assessment 
framework for evaluating instructional outcomes. It is not a 
framework for learning or designing instruction, but people 
still use it that way.

The Distributed Nature of Cognition

One of the important qualities of cognition is that differ-
ent categories of thinking comprise distributed and over-
lapping subprocesses at another lower level of description 
(Rumelhart, McClelland, & the PDP Research Group, 1986). 
For instance, subtraction and multiplication are separate cat-
egories of mathematical operation, and each requires its own 
set of mental steps to compute an answer. It seems safe to say 
that when people are doing subtraction, they have “shut off” 
multiplication. However, at a lower level of analysis, they 
are engaging many of the same underlying processes for both 
types of computation. What appears to be different at one 

level of analysis is not so different at another. We provide an 
example by introducing brain research that uses functional 
magnetic resonance imaging (fMRI). 

Brain cells are alive and therefore always active to some 
degree. If one simply looked at the activation of the brain 
for any category of thought, all the cells would be active. 
The constant activation of the brain makes for an interesting 
methodological problem, because it is not possible to say that 
one cognitive process (set of cells) is on, and another cog-
nitive process is off. To solve this problem, brain research 
examines relative changes to levels of activation. 

The MRI machine used for brain research is the same 
machine that doctors can use to collect images of soft tissues, 
such as a torn knee cartilage. For knee injuries, the machine 
records structural data on the shape and density of tissue. 
When used for fMRI, the scanner can detect changes in blood 
flow within the brain. When people complete a task, some of 
the brain cells do more work than others do. These working 
cells need to be replenished with oxygenated blood, and the 
fMRI picks up the changes in the blood flow. fMRI does not 
capture the firing of the neurons when people are completing 
the task, but rather the increase in blood flow after the task 
(about 2 seconds later). 

fMRI research depends on comparing the amount of local 
blood flow for different tasks. When a region of the brain 
receives more blood, scientists infer it has been more active. 
A study by Lee (2000) demonstrates a typical research strat-
egy. People completed subtraction tasks and multiplication 
tasks. The fMRI recorded brain activity during the two tasks. 
The investigators studied the average activation patterns 
across the brain for the subtraction tasks, as well as the acti-
vation patterns for the multiplication task. The whole brain 
is active for both tasks, but the researcher wanted to find 
out which brain regions are selectively more active for one 
task versus the other. To find out, the investigator took the 
activation patterns for subtraction and removed the activa-
tion patterns in common with multiplication. In other words, 
the scientist statistically removed all the activation for sub-
traction that was common with multiplication. The leftover 
activation indicates which parts of the brain are involved 
preferentially in subtraction compared to multiplication. The 
researchers then flipped the comparison. They took the brain 
activity for the multiplication task, and removed activity that 
was in common with the subtraction task. Figure 5.2 shows 
the results. The black regions indicate areas that are more 
active for multiplication than subtraction, and the white 
areas show the areas that are more active for subtraction than 
multiplication. 

The circled intraparietal sulcus (IPS) region was more 
active for subtraction. The IPS is also involved in various 
spatial attention tasks and judgments about the size of things 
(Uddin et al., 2010). One interpretation is that people are 
consulting some form of spatial representation—a mental 
number line—when doing subtraction (Dehaene, Piazza, 
Pinel, & Cohen, 2003). They are making sense of the relative 
magnitudes of the numbers while completing the subtrac-
tion on symbolic digits. In contrast, the area indicated as AG 
(angular gyrus) is more active for multiplication. This region 

Evaluation

Synthesis

Analysis

Application

Comprehension

Knowledge (memory)

Figure 5.1  Bloom’s taxonomy of cognitive outcomes is a framework 
for analyzing learning outcomes from 70 years ago (Bloom et al., 1956). 
Contemporary research does not support the implied ordering that people 
should learn the bottom of the pyramid before engaging the top of the 
pyramid.
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is also involved in the retrieval of factual, verbal memories. 
Thus, people seem to rely on the semantics of quantity (e.g., 
size and order) for subtraction, and they appear to rely on 
rote memory for multiplication, consistent with the idea they 
are consulting memorized multiplication tables.

Given these results, it may be easy to feel the pull of 
dichotomous thinking. For instance, one might want to con-
clude that when people are doing multiplication, their sense 
of magnitude (the IPS) is shut down.  One might even go fur-
ther to make the reckless conclusion that the proper method 
of multiplication instruction is to emphasize the memoriza-
tion of verbal math facts without regard for a sense of magni-
tude. We take a closer look at IPS activation to see why these 
are mistaken conclusions. 

Cochon, Cohen, van de Moortele, & Dehaene (1999) 
compared brain activation during multiplication with activa-
tion when staring at a small cross on the screen. Figure 5.3 
indicates the IPS is very active for multiplication compared 
to doing a non-mathematical task. When interpreting this 
new result, one might now conclude that it is important for 
multiplication facts to be tightly connected with one’s sense 
of magnitude. This is a very different conclusion from a 
dichotomous interpretation of the results in Figure 5.2.  

In summary, cognitive processes are always “on” to some 
degree. It is a mistake to view them as dichotomous, where 
one process excludes another. It is tempting to do so, because 
dichotomous categories simplify the world. On closer inspec-
tion, however, exclusive categories often hide a deeper truth 
about cognition, much as the satyr’s assumptions about hot 
and cold hid a deeper truth.

Nature Confers Cognitive Processes; Education 
Coordinates Them

A major goal of typical education is to coordinate evolu-
tionarily conferred abilities into ensembles that can achieve 

culturally relevant goals. Whereas most everyone learns 
to speak and interpret language, education coordinates our 
evolutionarily bestowed linguistic capacity with the visual 
system so that people can also read language. Similarly, 
education coordinates the IPS, largely implicated in spa-
tial attention, so it can contribute to mathematical thinking. 
Evolution bestowed humans with the ability to coordinate 
and re-coordinate cognitive and neural processes. 

A nice example comes from a study by Mackey, Miller 
Singley, and Bunge (2013). The authors compared brain 
changes among students who did or did not take a course 
that provided training for the Law School Admission Test 
(LSAT) exam (the entrance test for law schools). The LSAT 
is rich in hypothetical thinking, which requires one to set 
aside the facts that one knows, and instead, draw logical con-
clusions based on the stated premises in the problem. That 
is why it is called “hypothetical reasoning.” The effect of 
the LSAT training was to coordinate the prefrontal and pari-
etal regions. One interpretation is that the prefrontal regions 
learned to suppress spontaneous memory intrusions from 
the parietal regions, so people would rely on the premises 
and logic rather than their memories. Learning to deactivate 
memory retrieval is useful for doing the types of tasks that 
appear in the LSAT, a cultural invention. 

The reader may have entertained the analogy that learn-
ing is like strengthening a muscle. A better analogy would 
be learning to dance. Dancing requires the coordination of 
many muscles, as well as the strengthening of the muscles in 
response to one another. Strengthening without coordination 
is ineffective. Woltz, Gardner, and Bell (2000), for instance, 
found that if people already know how to do one set of com-
putation steps very well, they may display more errors when 
performing a new, related computation compared to a person 
who has less initial experience. Even though the seasoned 
subjects had strengthened some relevant computation “cog-
nitive muscles,” the coordination was wrong.

Figure 5.2  Regions of the brain are selectively active for different mathematics tasks. The figure shows three different slices of the brain.  Areas in white 
are more active for subtraction than multiplication.  Areas in black are more active for multiplication than subtraction. The circled region labeled AG 
indicates the rough location of the angular gyrus.  The circled regions labeled IPS indicate the rough location of the intraparietal sulcus. (Adapted from Lee, 
K. (2000). Cortical areas differentially involved in multiplication and subtraction: A functional magnetic resonance imaging study and correlation with a 
case of selective acalculia. Annals of Neurology, 48(4), 657–661.)  



Learning as Coordination 65

Consider the case of learning to type. One approach might 
be to have people strike a key faster and faster when they 
see the relevant letter. For instance, one sees the letter “” 
appear on a screen and then types the letter “” as quickly as 
possible. It is not hard to imagine a fun little computer game 
that could train this kind of response. It fits the muscle anal-
ogy, where one emphasizes the strengthening of an isolated 
skill. Typing programs, however, do not take this approach. 
Instead of helping people learn how to type each letter as 
quickly as possible, these programs help people coordinate 
multiple keystrokes. The bottleneck in typing is how well 
people can coordinate their fingers to handle collections of 
letters (i.e., words). Moreover, people also need to coordi-
nate the movements of their eyes with their hands, if they are 
typing from a document. They need to look ahead by just the 
right amount to anticipate how to coordinate their fingers for 
the transition from one word to the next. This fits the dance 
analogy, where one emphasizes the coordination of activity. 
Education is more about teaching the brain to dance than 
teaching it to lift weights.

Dichotomous thinking brings with it a focus on single 
cognitive processes, often to the exclusion of others. This 
can lead to tenacious misconceptions. One major misconcep-
tion may be the belief in learning styles. The belief is that 
different people have different favored cognitive abilities, 

and therefore, instruction should match a person’s favored 
cognitive ability. To be sure, there are individual differences 
in some foundational capacities. For instance, some people 
are better at mentally manipulating spatial information than 
others (Hegarty & Waller, 2005), and there are researchers 
who work on strengthening these very specific skills (Feng, 
Spence, & Pratt, 2007). However, this does not support the 
claim that, therefore, people with high spatial ability should 
receive instruction spatially, which is the immediate impli-
cation of some of the research on learning styles. Despite 
a thriving belief in learning styles, their effects must be 
small, because there is surprisingly little evidence to support 
the idea that people with different native strengths should 
receive different types of instruction (Pashler, McDaniel, 
Rohrer, & Bjork, 2009). When people claim they are visual 
learners, they may be claiming that they can interpret spatial 
information more easily, or perhaps, they are saying that they 
do not like to read very much, which is a motivation issue. 
Regardless, when one thinks of learning the important con-
tent taught in schools, it often depends on the coordination 
of the linguistic, spatial, conceptual, attention, memory, and 
other systems. 

Examples of Learning as Coordination

Learning to coordinate is foundational to the biology of 
the brain as it adapts to new information. At the cellular 
level, brain cells “learn” to coordinate their signals with 
one another. All learning requires coordination at the cellu-
lar level. The neurons need to communicate to accomplish 
work. Learning comprises an increase and decrease in the 
number and strength of connections among neurons, so they 
can coordinate their communication more effectively for 
specific tasks. Of course, knowing this fact does not get one 
very far in thinking about the macro-level of learning that 
teachers handle in classroom instruction. Therefore, in this 
section we provide some examples of coordination for the 
types of tasks and learning found in schools. The examples 
come from reading, mathematics, and conceptual change. 

Learning to Read

A crisp example of the role of learning as coordination 
involves reading. By the time that children are learning to 
read, they have extensive vocabularies. They can detect 
words in sound, and they can use these sound-based words to 
retrieve their meanings from memory. Arrow 1 in Figure 5.4 
indicates this coordination of hearing and memory. With 
reading, children now have the challenge of hooking up 
their visual system to their auditory system, as indicated by 
arrow 2. They need to learn that the look of a set of letters 
(a written word) corresponds to a sound. Establishing this 
coordination takes time, because the children need to learn 
how to see and hear the letters. Over time and with many 
hundreds of hours of practice, people begin to establish 
coordination between sight and meaning. They develop a 
link directly between the look of a word and its meaning, as 
indicated by arrow 3. 

Figure 5.3  The intraparietal sulcus (IPS) is active for multiplication tasks 
relative to staring at a fixation cross.  (Adapted from Cochon, F., Cohen, 
L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions 
of the left and right inferior parietal lobules to number processing. Journal 
of Cognitive Neuroscience, 11(6), 617–630. Reprinted by permission 
of MIT Press Journals. Copyright 1999 Massachusetts Institute of 
Technology.)
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The link between vision and word meaning becomes auto-
matic with practice. When seeing a word, it is hard to ignore 
its meaning, as shown by the Stroop task (Stroop, 1935) in 
Figure 5.5. Moreover, people can read without having to 
sound out words, which enables them to read much faster. 
An interesting fact is that once sight and meaning have been 
coordinated, people do not lose the coordination between 
sight and sound. For instance, if you run into a word that 
you do not know immediately, you may notice that you sub-
vocalize that word—you are sounding it out in your head in 
the hopes that arrow 1 will help find the meaning, because 
you cannot find the direct link from sight to meaning. It is 
informative to note that population variability in the ability 
to speak language is much lower than the variability found in 
reading. This is because reading depends on the special coor-
dinating arrangements of culture and school, whereas speak-
ing and understanding oral language are conferred by nature. 

Approximate Addition

The significance of well-coordinated processes also appears 
in mathematics tasks. Tsang, Dougherty, Deutsch, Wandell, 

and Ben-Shachar (2009) investigated children’s abilities to 
do approximate addition. In approximate addition, people 
receive an addition problem and have to choose which of 
two answers is closer without computing the answer exactly. 
Given 27 + 14, is 40 or 60 closer to the answer? The task is an 
experimental version of the standard “estimate the answer” 
assignment in school. Tsang had children complete numer-
ous problems and found that there were reliable individual 
differences in children’s performance.

The researchers then took measures of the brain’s white 
matter using MRI. The white matter consists of fibers or tracts 
that connect regions of gray matter that reside on the sur-
face of the brain. The gray matter is responsible for different 
types of computations, whereas the white matter helps distal 
brain regions communicate. Figure 5.6 shows the brains of 
two children and the white-matter tract of interest (anterior 
superior longitudinal fasciculus: aSLF) for the approximate 
addition task. Children who had a more coherent tract con-
necting the two areas of the brain were also the ones who 
did better on the approximate addition task. The implication 
is that they were better able to coordinate the computations 
between different brain regions.

At this fine level of granularity, the coordination of differ-
ent processes appears as biological, and one can ask whether 
and what types of educational experiences might improve the 
structure of these specific biological pathways. The research-
ers did not address this question. A likely hypothesis is that 
the children need to engage in tasks that co-activate and force 
the coordination of the two areas of gray matter to drive 
changes in the connective white matter (see Scholz, Klein, 
Behrens, & Johansen-Berg, 2009). 

Conceptual Change in Mathematics

Conceptual change refers to major shifts in how people think 
of a situation or problem (see also Chapter 18, this volume). 
For instance, young children change from a conception of 
a flat earth to a round one (Vosniadou & Brewer, 1992). 
Conceptual change in mathematics provides a strong exam-
ple of learning as coordination. To an adult, the digit “5” 
coordinates multiple quantitative meanings seamlessly. For 
instance, 5 can refer to cardinality—five total things. It can 
refer to ordinality—fifth in a series. It can also refer to mag-
nitude—5 is bigger than 3.  Infants, and many animals, have 
innate abilities for each of these separate meanings of num-
ber. They can differentiate between two and three objects 
at a rapid glance; they can tell whether something comes 
before or after something else; and they can judge larger and 
smaller. The task of instruction is to coordinate these differ-
ent abilities to make an integrated concept of number. For 
instance, Griffin, Case, and Siegler (1994) created a kinder-
garten curriculum that involved board games where students 
had to translate between the different meanings. They might 
roll a die and count the total number of dots (cardinality). 
They would then move their character on the game board 
the same number of spaces forward, thereby translating 
between ordinality and cardinality. They might then have to 
decide who has more total spaces so far, translating between 

Figure 5.4  Circuits that enable reading.  Evolutionarily conferred 
language circuits map between word sounds and meaning.  It requires 
explicit education to coordinate the activity of the visual system so that 
reading language also becomes possible. 

Figure 5.5  The Stroop effect.  The task is to say the color of the word 
(black), but people automatically read and retrieve the meaning of the word 
(white), which slows down their time to complete the task of saying black.
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magnitude and ordinality. These researchers found that chil-
dren who played the coordinating games did better in first 
grade the following year compared to children who played 
games that tried to improve each sense of quantity inde-
pendently (e.g., just counting dots to find cardinality without 
translating the results into ordinal position or to make a mag-
nitude comparison).

When people learn fundamentally new concepts, they 
need to re-coordinate the relations between evolutionarily 
old neural circuits. Dehaene and Cohen (2007) proposed that 
people “exapt” neural circuits for cultural purposes through 
a process of cortical recycling. Exapt means that a structure 
originally evolved to serve one function is borrowed to serve 
another. For example, the visual circuits responsible for fine 
discrimination of natural phenomena become repurposed to 
identify symbolic letters. Blair, Tsang, and Schwartz (2013) 
looked for evidence of borrowing primitive perceptual com-
putations in the context of a mathematical conceptual change; 
namely, learning the integers. 

The integers introduce the negative numbers and zero to 
the natural numbers. The understanding of negative numbers 
is unlikely to have been conferred by nature, given that they 
are a recent invention (Varma & Schwartz, 2011). The inte-
gers also depend on the introduction of new mathematical 
structure in the form of the additive inverse: X + –X = 0. 
The authors asked what innate abilities were exapted to han-
dle the additional structure of the negative numbers. Adults 
had to decide the mid-point of two digits, for instance, 2 and 
10 (answer: 6), –6 and 2 (answer: –2). As the digits became 
more symmetric about zero, people answered more quickly. 
For instance, people could solve –5 and 7 faster than –3 
and 9. This was true even if people heard the digits rather 
than seeing them on a screen. Interestingly, they also found 
that brain regions associated with detecting visual symme-
try (e.g., visual area V5) became more active for the more 
conceptually symmetric problems. Based on this evidence, it 
appears that people exapt their abilities to detect symmetry to 
help make sense of the integers, which can be conceptualized 
as symmetric about zero.

The authors went a step further to determine if this finding 
had implications for instruction. They created a curriculum 

for fourth graders that emphasized symmetry (Figure 5.7) so 
that students could coordinate their innate abilities with sym-
metric structures to understand the negative numbers. They 
found that this curriculum led to superior abilities to solve 
novel integer problems compared to current instructional 
models, which do not help students coordinate their knowl-
edge of natural numbers and symmetry to build an under-
standing of integers. 

Memory and Understanding

We now turn to the discussion of dichotomies that may be 
familiar to the reader. The poles of these dichotomies reflect 
important cognitive processes and outcomes. The risk is that 
people treat the poles as mutually exclusive and argue for one 
over the other. We begin with the distinction between mem-
ory and understanding. These processes need each other. 
For instance, a common technique in classrooms around 

Figure 5.6  White-matter tracts connect distant surfaces of the brain.  These two brains show differences in the anterior superior longitudinal fasciculus 
(aSLF) white-matter tracts that connect two regions of the brain that coordinate to complete approximate addition tasks. (For visual clarity, the aSLF tracts 
are shown in black and the many other white-matter tracts of the brain have been removed from the image.)  (Courtesy of Dr. Jessica Tsang, based on data 
collected in Tsang et al., 2009.) 

Figure 5.7  Hands-on materials created to emphasize the symmetry 
of positive and negative materials.  Children received integer addition 
problems (e.g., 5 + –6) that they modeled by setting out positive and 
negative blocks about the zero point.  To find the answer, they clapped 
the blocks together, folding up from the zero point.  The number of extra 
blocks on either side gives the answer.
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the world is to have students activate their prior knowledge 
before a lesson. “Do you remember hugging your dog? Did 
you notice the warmth? That is because a dog is a mammal, 
and mammals are warm-blooded.” Activating prior knowl-
edge is an example of retrieving memories to help one under-
stand new ideas better. In this case, understanding depends 
on memory. A second common instructional technique is 
to ask people to make sentences out of new words. Making 
a meaningful sentence with a new word will help people 
remember the word. In this case, memory depends on under-
standing. Despite the obvious interdependence of memory 
and understanding, they are often placed into the following 
exaggerated opposition:

Rote memorization ↔ Deep understanding

People need to memorize important recurrent facts. Knowing 
the fact families in math is a great asset for solving prob-
lems that depend on factoring. Remembering is faster than 
problem solving, and for many problems, speed matters. 
Being able to remember an answer also frees up cognitive 
resources useful for understanding broader aspects of a 
problem. Similarly, people need understanding. If one truly 
understands, then one can recreate what may be forgotten. 
There are important differences between memorization and 
understanding, but as fits our argument, they work better in 
coordination than in isolation. We begin with a brief review 
of the memory literature, and then the literature on under-
standing. We then consider why the coordination of memory 
and understanding is important for the transfer of learning 
from one setting to another. 

Memory

Memory is one of the most intensely studied and theorized 
domains within cognitive psychology. How can people gain 
memories without limit, yet still remember the right memory 
at the right time and at blazing speeds? For example, here is a 
random word—“peach.” You probably recalled the right fruit in 
about 0.6–0.75 seconds. Given how many memories you have 
about so many different things, it is a stunning achievement. 

Humans have many distinct memory systems, each special-
izing in a different type of information. At an extreme, one can 
consider the immune system to be a type of memory. When 
people receive bone marrow transplants, doctors kill the exist-
ing marrow and then replace it. As a result, the immune system 
“forgets” all the diseases it has encountered and it needs to 
relearn. For cognitive phenomena, there are multiple memory 
systems, and recent evidence suggests that each requires sep-
arate sleep cycles to help consolidate the memories of the day 
(Stickgold, 2005). For instance, given a typing lesson, people 
will type faster after sleeping on the lesson than they did at the 
end of the typing lesson. If people’s sleep is interrupted dur-
ing the specific cycle associated with this form of procedural 
memory, they will not perform better in the morning. 

Gaining a memory depends on two processes. One is 
encoding the memory, or “getting it in there.” The other is 
retrieval, or “getting it back out.” We consider each briefly. 

Encoding involves laying down the initial trace of a mem-
ory. Ideally, the way one encodes a memory will improve 
the chances of remembering it later, and this is an impor-
tant emphasis of good instruction. There are a number of 
study techniques for improving memory. One class of strat-
egies relies on the meaning of what one is trying to learn. 
For instance, connecting a new idea to a pre-existing idea 
improves encoding. If you are trying to learn a new phone 
number, it helps to find familiar mathematical patterns. Given 
422-8888, one might improve the encoding of the phone 
number by thinking, “4 divided by 2 makes 2, and adding 
them up makes 8 of which there are 4 again.” This works 
much better than just repeating the phone number, which is 
a recipe for forgetting as soon as one stops repeating the dig-
its. In general, the depth of processing (Craik and Lockhart, 
1972) and the relevance of elaboration (Stein & Bransford, 
1979) predict the success of memory encoding. The more 
you think about a new idea and relate it to other ideas in 
meaningful ways, the better the chances of remembering 
it. It is as if you are laying down lots of neural roads, so it 
is easier to get back to the idea from other ideas. A second 
class of general encoding strategy—spaced practice—works 
regardless of the content of what one is learning (Cepeda et 
al., 2009). If one plans to work on memorizing words for a 
total of 10 minutes, it is better to use five separate sessions 
of 2 minutes each rather than one big session of 10 minutes. 
Cramming for a test is a bad way to create memories for a 
lifetime.

The second process of memory is retrieval, which 
involves bringing the memory back out. Retrieving a mem-
ory increases the chances of being able to retrieve it again 
later. A seminal demonstration comes from the “generation” 
effect (Slamecka & Graf, 1978). People received word pairs 
in one of two conditions. In the read condition, the words 
were presented completely, for instance, FAST : RAPID. In 
the generate condition, the words were presented as FAST: 
R_P_D. People knew the words had to be synonyms, and 
they could easily generate the missing letters to generate 
“rapid.” People read or generated very many words. A short 
time later, they recalled as many of the words as possible. 
The generate condition remembered more of the words. One 
possible explanation is that the generate task required work-
ing a little harder to remember the word “rapid” during the 
task, which made subsequent retrieval a little easier. The 
importance of retrieval practice has resurfaced recently as 
the testing effect (Karpicke & Blunt, 2011). Taking a test, 
which requires retrieving memories, improves the chances 
of retrieving those memories later, for example, on a future 
test. Of course, the implication is not necessarily that stu-
dents should take repeated tests, but rather, they should 
practice remembering what they know. If one wants to learn 
using flashcards, it is better to try to remember what is on the 
other side of the flashcard than just turning it over to see the 
answer. 

With practice, the neural coordination of memories 
changes (McClelland, McNaughton, & O’Reilly, 1995). An 
example comes from children solving simple mental addition 
and subtraction problems. Behaviorally, children are very 
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accurate at all ages, but they answer more quickly as they 
develop more experience with math facts. Figure 5.8 shows 
changes in brain activity with development (Rivera, Reiss, 
Eckert, & Menon, 2005). The bottom panel highlights areas 
that decrease activity. As children gain experience, they do 
not rely on the prefrontal areas of the brain as much. Among 
other things, the prefrontal area is responsible for the delib-
erate control of processing. With experience, the children do 
not need to do as much deliberate control to help them put 
their memories together to come up with the answer. The bot-
tom panel shows areas of the brain that become more active 
for the arithmetic tasks as children gain more experience. 
With experience, these parietal areas become responsible for 
holding the relevant memories, and children can access them 
directly with little deliberate effort. Tasks that once required 
flexible but cognitively costly executive control come to be 
executed by quickly retrieving stored memories (see also 
Chapter 19, this volume). 

At the behavioral level, a clear case of memory trans-
formation involves skill acquisition (Anderson, 1982). 
Acquiring skills involves a transition from declarative to pro-
cedural memory. Declarative memory refers to things you 
can say, and procedural memory refers to things that you do. 
Imagine that you are learning to change lanes while driv-
ing. At first, you followed declarative instructions—“check 
your blind spot, turn on your blinker, check your blind spot, 
turn the wheel . . . ” With practice, you no longer needed to 

rely on these verbal memories. Instead, you developed pro-
cedural memory. You can tell because you do not need to 
talk to guide yourself through the steps. Instead, you can just 
execute them. After even more practice, these skills become 
automated. They require very little cognitive control or atten-
tion to execute. For instance, you can change lanes while 
also talking to your passenger. Because you do not need to 
pay attention to the skill execution, you can pay attention 
to talking. The way this works is that all the steps become 
“chunked” together so that one quickly leads to the next, and 
it requires little cognitive control to coordinate the transition 
from one step to another. They become one big step. 

The transition from declarative to procedural memory has 
been an important guide for the design of many curricula. 
One of the most notable involves computerized “cognitive 
tutors” (Anderson, Corbett, Koedinger, & Pelletier, 1995). 
These intelligent computer programs track a student’s pro-
gress. By monitoring how well the learner is performing on 
various tasks, it can infer whether the child has developed 
chunked procedural knowledge. If not, the program can back 
up to provide the student with relevant practice. 

Understanding and Analogy

A common objection to memory-focused models of instruc-
tion is that students may learn to recall or execute a skill, but 
they may not understand it. For instance, students who mem-
orize math steps may not really understand what those math 
steps mean. But, what counts as “understanding?”  

The definition of “understanding” has been a subject 
of philosophical investigation since at least the time of 
Socrates. In cognitive psychology, different investigators 
choose different ways to operationalize understanding that 
are most relevant to their topic of study. (The term “oper-
ationalize” means that one indicates which measureable 
behaviors provide evidence for a given mental state or pro-
cess.) For instance, a researcher who studies mathematics 
learning may operationalize understanding as the ability to 
verbally justify the generality of a particular claim (does the 
operation of addition always make a greater total quantity?). 
A person who studies language acquisition may operation-
alize understanding as the ability to identify the referent of 
a word (given the word dog, point to the right thing). Thus, 
there is no single definition of understanding. Nevertheless, 
it has been possible to make important empirical advances.

One major advance has been the distinction between sur-
face features and deep structures. A deep structure is a set of 
necessary relations that characterize what is the same across 
many instances (e.g., mammal: warm-blooded, hair). A sur-
face feature is a property that may or may not be important 
(e.g., red hair). A classic example comes from Chi, Feltovich, 
and Glaser (1981). They had novices and experts categorize 
physics problems. Experts grouped spring and inclined-plane 
problems together, whereas novices did not. The experts 
identified that the problems shared the deep structure of 
being about potential energy. To the novices, these situations 
seemed completely different, because one involved springs 
and one involved inclined planes, which do not look alike. 

Figure 5.8  Changes in how the brain solves mental addition problems as 
children develop. The top panel shows that children increasingly rely on 
parietal regions to solve addition problems, and the bottom panel shows 
that they decreasingly rely on executive control from the prefrontal 
cortex to accomplish the tasks. (Adapted from Rivera, S. M., Reiss, A. L., 
Eckert, M. A., & Menon, V. (2005). Developmental changes in mental 
arithmetic: Evidence for increased functional specialization in the left 
inferior parietal cortex.  Cerebral Cortex, 15(11), 1779–1790. 
By permission of Oxford University Press.)
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In mathematics and science education, helping students learn 
the deep structure is important. A phenomenon’s deep struc-
ture is typically what verbal principles and formulas describe. 

Oftentimes, people rely on surface features while learning, 
and this causes them to miss the deep structure. In a telling 
study, students learned the probability formulas for computing 
combinations and permutations (Ross, 1987). (As a reminder, 
imagine pulling two chips from a bag of red and blue chips. 
There are three possible combinations: two reds, two blues, 
or one red and one blue. Permutations further consider the 
possible orderings: red → red, blue → blue, red → blue, blue 
→ red.) In the study, the students learned to compute the 
number of combinations using marbles as the example, and 
they learned permutations using cars as the example. On the 
posttest, students received combination and permutation prob-
lems. They used the combination formula for problems about 
marbles—regardless of whether the problem called for finding 
combinations or permutations of marbles. Similarly, if a prob-
lem involved cars, the students used the permutation formula 
whether it was appropriate or not. The students had memo-
rized the formulas just fine. The problem was that they relied 
on the surface features of the problems (e.g., cars or marbles) 
to decide which formula to use. They did not learn to recog-
nize the deep structure of combinations and permutations, 
which holds up regardless of cars or marbles. 

Analogies capitalize on the distinction between deep 
structure and surface features. Consider the abbreviated test 
question: 

Deluge is to Droplet as:

(a)	 Landslide is to Pebble
(b)	 Cloudburst is to Puddle

Many people choose (b) as the answer, because it shares 
the surface feature of being about water. Answer (a) can 
be construed as a better answer because it shares the same 
deep structure as the prompt, which might be summarized 
as “many harmless events can accumulate into a disaster.” 
Being able to work with the deep structure of a situation is 
one useful operationalization of understanding. 

Transfer and Induction—Where Understanding 
and Memory Work Together

Research on transfer highlights the importance of coordinat-
ing memory and understanding. Transfer refers to the use of 
prior learning in a new situation. Liberal education is pred-
icated on the notion of transfer, because students learn in 
school, but they need to use this learning outside of school. 
In contrast, training-oriented instruction often does not need 
to consider issues of transfer. The application context typi-
cally shares the same surface and deep features as the origi-
nal learning conditions. Training airline pilots in a simulator 
does not raise large transfer challenges, because the simu-
lated cockpit is very similar to the cockpit of the plane; they 
share the same surface and deep features. 

Transfer depends on the coordination of memory and 
understanding. For instance, in the preceding study, the 

students remembered the procedures for computing permu-
tations and combinations. This was insufficient for effective 
transfer, however. They did not understand the deep structure 
of situations that call for the use of one or the other formula. 
Of course, had the students never memorized the procedures, 
they would not have had a formula to transfer either. How 
can we help students both memorize and understand?

One solution is to rely on inductive learning (Holland, 
Holyoak, Nisbett, & Thagard, 1986). Induction refers to the 
process by which people use multiple instances to create a 
new category or rule. (It contrasts with deduction, where 
people start with a rule or category, and determine what 
instances are possible.) Through induction, people may find 
the deep structure that unifies discrete memories and gener-
alizes to new situations.  

Discrete memories do not transfer well, because they typ-
ically apply to a single situation. For instance, memorizing 
3 + 1 = 4 will not help solve 4 + 1. However, if people mem-
orize that 3 + 1 = 4, 4 + 1 = 5, 5 + 1 = 6, and so forth, they 
might induce the rule that “any number plus 1 equals the next 
number in order.” Induction is an important way that people 
generalize from the instances they have encountered and go 
beyond the information given (Bruner, 1957).

People are always inducing patterns from their memo-
ries and experience. However, they may not induce what we 
consider most important. For instance, given the series of +1 
problems above, a student might correctly but inappropri-
ately induce, “this teacher really likes to give problems with 
a 1 in them.” Through education, we want people to induce 
particular patterns that generalize well, not idiosyncratic 
ones. Learning through analogy is a powerful way to help 
people induce targeted understanding from a set of instances.

A classic study on learning from analogy clarifies the role 
of induction in coordinating memory and understanding for 
transfer. Gick and Holyoak (1983) tried to determine what 
would help people solve Duncker’s radiation problem, short 
of giving them the answer.  Here is the problem:

A patient has a tumor that needs to be irradiated. If the doctor 
uses a beam that is powerful enough to kill the tumor, it will 
kill healthy cells as it passes on the way to the tumor. If the 
doctor uses a radiation beam that is weak enough that it will 
not hurt healthy cells, then it will not kill the tumor. What 
can the doctor do? 

The answer: The doctor can use multiple weak beams from 
different angles that simultaneously converge on the tumor. 

To see what would help people solve this problem, the 
researchers constructed several analogs to the radiation prob-
lem. For example, in one analog, a general wanted to attack 
a fortress and had to split up his troops to converge from 
different angles so they would not be too heavy for any one 
bridge. In another, firefighters needed to use multiple bucket 
brigades to douse a fire. In some cases, the researchers also 
described the general principle, “Split up forces to converge 
on a central target.” Given these elements, the researchers 
tried different combinations to see which ones would support 
transfer to the radiation problem. 
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College students were randomly assigned to one of sev-
eral conditions. One factor was the number of analogies 
included in the packet: zero, one, or two of the analogs (for-
tress and fire problems). A second factor was whether or not 
the packet included a statement of the principle. On the last 
page of all the packets was the radiation problem. Table 5.1 
shows the percentage of students who solved the radiation 
problem at the end of the packet. (Students who received nei-
ther the analogs nor the principle received filler materials in 
their packet and served as the control condition.)

The most notable findings involve the first column. 
Students who were told the correct principle without receiv-
ing any examples did not transfer very well. One interpreta-
tion of this result might be that the students did not understand 
the principle without an example. However, students who 
received one analog (an example) plus the statement of the 
principle did not do much better. Why would a single exam-
ple with a principle be ineffective for transfer? The principle 
indicated the deep structure of the problem, and the students 
had an example to help make sense of the principle. It cannot 
simply be that the students did not know the deep structure. 

The students who received two examples (analogs) did 
much better, with or without a statement of the principle. (The 
students who received the two examples without the principle 
were often able to induce the principle from the two analogs, 
so they did not need to read the principle.) One possible reason 
that the single analog and the principle did not work very well 
is that students did not learn the range of variation that might 
appear for this particular principle. For example, those students 
who only learned about the story of attacking the fortress from 
multiple bridges, even with the statement of the principle, had 
no way of knowing that it can apply to lots of situations. The 
surface features, while incidental to the deep structure, are still 
important for transfer. Remembering variability of the surface 
features allows people to appreciate that the deep structure 
they understand can apply to many situations. Thus, memory 
of several instances and understanding work together, and one 
without the other does not work very well for transfer. 

The value of coordinating memory and understanding 
for transfer yields some simple instructional prescriptions. 
Loewenstein, Thompson, and Gentner (2003) describe a 
study where they found that asking business students to find 
the analogous structure between case studies led to supe-
rior learning compared to a condition where students han-
dled each case separately without looking for the common 
structure. Providing two analogous examples works well for 
transfer, but students need encouragement to induce the com-
mon deep structure that unifies otherwise discrete examples 
(Schwartz, Chase, Oppezzo, & Chin, 2011). 

Despite the simplicity of helping students induce the deep 
structure across instances, there is an instructional tendency 
to use on single examples plus a statement of the rule. Felder 
and Silverman (1988) noted that almost all engineering pro-
fessors claim to use deductive instruction methods when 
teaching others—going from general rule statements to spe-
cific instantiations—even though they often themselves use 
inductive learning methods, proceeding from particulars to 
generalities. Additionally, people may neglect the potential 
of using analogies to support induction. In a review that 
compared instruction cross-nationally, Richland, Zur, and 
Holyoak (2007) found that U.S. teachers tended not to cap-
italize on the use of analogy compared to teachers in Hong 
Kong and Japan. Perhaps, by understanding how memory 
and understanding coordinate, educators will take more 
advantage of analogical induction.

Concrete and Abstract

A long-standing distinction, at least since the time of Plato, is 
the dichotomy between concrete and abstract mental representa-
tions. The idea is that concrete thinking is tied to the perceptu-
al-motor particulars of a situation, whereas abstract operations 
rise above immediate experience to use logical relations and 
hypothetical thinking. The dichotomy is relevant to instruction, 
because people often favor one over the other mode of operation. 
For example, in California, the state’s science curriculum com-
mission proposed legislation that would limit hands-on learning 
to “no more than 20 to 25 percent” of instructional time. This 
resulted in an outcry from educators and business people, and 
the final legislation reversed the proposal to “at least 20 to 25 
percent” of science instruction using hands-on material (empha-
sis added, 2004, www.cascience.org/csta/leg_criteria.asp). 

A similar distinction between perception and abstraction 
occurs in intuitive frameworks for thinking about the brain: 
The brain is an information-processing system that takes in 
information from the senses and transforms it in different 
ways along a series of processing stages. The early stages of 
information processing are “low-level.” For vision, these early 
stages would include extracting edges from a scene, creating 
contours for objects, determining stable colors not influenced 
by lighting conditions, and segregating objects from their 
backgrounds. “High-level” stages are further “downstream” 
in the flow of information processing, executed only after a 
considerable amount of sensory and perceptual processing 
has completed. High-level processes would involve cogni-
tive actions such as inferring likely career choices of a friend, 
deciding where to search for an answer, and creating a new 
diagram for representing relations among cognitive functions.

The intuitive separation of low-level and high-level oper-
ations fuels many of the dichotomies found in education, 
such as Bloom’s taxonomy. One key dichotomy might be 
represented as follows:

Perception  ↔ Conception

As with all dichotomies, there is some truth to it. The brain 
is not a homogeneous lump. It is organized into spatially 

Table 5.1 � The Effects of Induction and Explanation on 
Transfer Data from Gick and Holyoak (1983)

Percent who Solved the 
Radiation Problem

Read Principle Did not Read Principle

Received no analog 28% 18%

One analog 32% 29%

Two analogs 62% 52%
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distinct modules with specialized functions. Some of the 
best-articulated modules are those dealing with perception, 
and these perceptual modules are often the first to be acti-
vated in response to a stimulus. In contrast, concepts do not 
need to be stimulus-driven. One can bring to mind the con-
cept of “dog” without seeing or hearing a dog. Moreover, 
concepts have abstract and logical relations to other con-
cepts, such as “not a cat.”

Despite the important distinctions between concepts and 
percepts, they are not dichotomous. Gross anatomical con-
siderations indicate a high degree of coordination between 
low-level perceptual processes and high-level conceptual pro-
cesses. First, there are strong down-stream connections from 
perception to conception, so that stimulation of the percep-
tual system gives rise to relevant concepts. Second, there are 
also reciprocal up-stream connections from conceptual levels 
of analysis to the perceptual system (Lamme & Roelfsema, 
2000). The tight integration is manifest when considering the 
time course of identifying an object such as a dog’s tail. As 
stimulus information arrives from the senses, populations of 
neurons complete low-level analysis, such as edge detection, 
to extract important perceptual features. At 120 millisec-
onds, these neural populations operate similarly, regardless 
of whether one is explicitly paying attention to the object, 
and whether one has knowledge that there is a dog attached 
to the object. In this time window, the neurons are engaged 
in pre-attentive, unconscious perceptual processing. Yet, at 
160 milliseconds, the same neural populations will respond to 
high-level information about where to pay attention and the 
knowledge of the context of the object (it is a dog). It is this 
latter activity that people consciously experience—“it is the 
tail of a dog” (Fahrenfort, Scholte, & Lamme, 2007). Thus, if 
one wants to know whether a neuron is “strictly perceptual,” 
the answer depends on when one asks the question as much as 
it depends on which neuron is involved.

These broad considerations of neural architecture echo in 
the functional behavior of people. People adjust the process-
ing of lower-level regions so that they are better adapted to 
the needs of higher-level cognition. Our perceptual systems 
are surprisingly adaptive, even late in life, and they typically 
adapt so that we can perform high-demand tasks more effec-
tively (Fahle & Poggio, 2002).

The renowned philosopher Quine (1977) argued that 
advanced scientific thought must dispense with notions of 
perceptual similarity as the basis for its categories (see also 
Chapter 1, this volume). The argument seems plausible at 
first sight, and it has some similarity to the idea that under-
standing depends on finding deep relational structures rather 
than relying on surface features. Our perceptual systems 
might mislead us into believing that samples of fool’s gold 
(pyrite) are true gold. Better to rely on the periodic table and 
the physical chemistry of the elements. There is a good deal 
of appeal to this argument. However, if one used the possi-
bility of error as a reason to discard perception from scien-
tific thinking, one would also have to throw out conception, 
because people’s concepts are frequently wrong as well (e.g., 
McCloskey & Kohl, 1983). It is the possibility of error that 
creates the possibility of learning and discovery.

Fittingly, people can learn to perceive. Learning is not 
confined to abstract matters such as F = ma. Perception can 
be educated and augmented so it complements conceptual 
thinking. People can look for subtle properties that distin-
guish fool’s gold from the real thing. People can supple-
ment their biological perceptual apparatus with tools such 
as microscopes, hardness scales, and quantitative measure-
ments of malleability.

Education and experience change the processing of the 
perceptual system (Goldstone, 1998). Some of these changes 
can occur in perceptual areas relatively early in the brain’s 
information-processing stream. For instance, consider expert 
perception. Researchers measured the electrophysiological 
activity of dog and bird experts while they looked at pic-
tures of dogs and birds (Gauthier, Tarr, & Bubb, 2010). For 
dog experts, enhanced electrical activity occurred 164 mil-
liseconds after the presentation of dog, but not for a bird. 
Reciprocally, bird experts showed quick activation for bird 
pictures but not for photographs of dogs. This is an impres-
sively fast processing effect of expertise given that transmit-
ting a simple electrical signal from one end of a neuron to 
the other requires about 10 milliseconds. For brain evidence 
of experience-driven changes to perception, Furmanski, 
Schluppeck, and Engel (2004) used fMRI to measure brain 
activity before and after 1 month of practice with detecting 
hard-to-see lines. Practice increased responses in the primary 
visual cortex (area V1) and the degree of change correlated 
with detection performance. Bao, Yang, Rios, and Engel 
(2010) found changes in electrical activity as fast as 50–70 
milliseconds after stimulus onset. Perception, even at the 
first stages of information uptake, can be educated. In fact, 
there is evidence that auditory training can produce differ-
ential responses in sensory receptors, such as the cochlea 
(Puel, Bonfils, & Pujol 1988), a sensory organ just inside of 
the eardrum. Perceptual changes are found at many different 
neural loci and a general rule seems to be that brain regions 
associated with early perceptual analysis are implicated in 
finer, more detailed, and generally less transferable knowl-
edge (Ahissar & Hochstein, 1997). 

Even learning abstract topics such as algebra can be 
improved by harnessing perceptual learning in instruction. 
A nice example comes from Kellman, Massey, and Son’s 
(2010) perceptual learning modules. The algebra learning 
modules have high feedback and minimal explicit instruc-
tion. They try to develop students’ sensitivity at noticing 
preserved structures in equations across algebraic transfor-
mations. For example, students are given trials on which they 
must determine that 6y – 17 = 32 – 5x is a valid transforma-
tion of 6y + 5x – 17 = 32, but that neither 6y – 17 = 32 + 5x 
nor 6y – 17 = 32 – x – 5 are. Although this kind of training 
might seem like “mere symbol pushing,” the argument from 
perceptual learning is that by training students to see con-
trasts between valid and invalid algebraic transformations, 
they come to naturally perceive or induce the underlying 
structure of algebra.

Lawrence Barsalou has presented a particularly influen-
tial account of the grounding of conception in perception 
in the form of perceptual symbols theory (Barsalou, 1999). 



Learning as Coordination 73

By this account, conceptual knowledge involves activating 
brain areas dedicated for perceptual processing. When a con-
cept is brought to mind, sensorimotor areas of the brain are 
reactivated. Even abstract concepts, such as truth and nega-
tion, may be grounded in complex perceptual simulations of 
combined physical and introspective events. Interestingly, 
Barsalou’s research shows that when people engage in per-
ceptual simulations, their understandings of a concept are 
likely to be richer and more flexible compared to when they 
do not. Reasoning based on perception is the “smart,” not 
“stupid” stuff. This result is echoed by studies showing that 
students who show greater mathematical competence are 
more, not less, likely to engage in perceptual solutions to 
algebraic tasks (Goldstone, Landy, & Son, 2010). For exam-
ple, students who exhibit relatively good mastery of mathe-
matics are more likely to solve problems such as x – 2 = 7, 
by imagining the 2 moving from the left side of the equa-
tion to the right side, turning into a +2 as it does so. Rather 
than viewing perceptual processes as antagonistic to proper 
formal thought, it is precisely by properly executing these 
perceptual processes that formally sanctioned reasoning is 
achieved effectively.

A major challenge of school-based instruction is helping 
students coordinate the abstract, symbolic representations of 
culture with the perceptual world of experience. Glenberg, 
Gutierrez, Japuntich, and Kaschak (2004), for instance, 
noted that young readers often do not construct a mental 
model of what they are reading, but instead, they are just 
saying the words aloud. To help, the researchers had young 
children manipulate figurines to correspond with each sen-
tence they read (e.g., “the man went into the barn”). They 
then told the children they should do this in their head when 
reading. This improved reading comprehension later, even 
when the children no longer manipulated figurines physi-
cally. An important challenge for an educationally relevant 
cognitive psychology is to develop new theories and evi-
dence that helps guide fresh instructional efforts to coordi-
nate perception, action, and conception (Goldin-Meadow & 
Beilock, 2010). Simply juxtaposing a concrete and abstract 
representation may not be sufficient for people to learn to 
coordinate their perceptual-motor abilities with their sym-
bolic ones.

Dichotomania

We have sampled a pair of familiar dichotomies. There are 
others. For instance, a common dichotomy is the distinction 
between passive versus active learning, which appears in the 
college instruction literature (e.g., Prince, 2004). Passive 
learning largely refers to sitting in a large lecture listening 
to a professor’s exposition, whereas active learning refers to 
being engaged in problem solving during class. Dichotomies 
with family resemblances include learning by doing ver-
sus being told, as well as discovery learning versus direct 
instruction. The intuition that students can learn more effec-
tively when they are experientially engaged, or at least not 
being crushed by tedious exposition, is worthwhile. At the 
same time, a tremendous amount of learning occurs through 

reading and hearing explanations, for example through mass 
media, the internet, and books. Experience and explanation 
each has its place. So again, the task is how to coordinate 
these different types of learning. Experiential activities can 
provide direct engagement of a phenomenon or problem, 
whereas lectures and readings can provide explanations 
of those experiences in ways that students are unlikely to 
discover on their own. On this model, one way to coordi-
nate active and passive learning is to use active experience 
to create a time for telling (Schwartz & Bransford, 1998). 
For instance, Arena and Schwartz (2014) had students play 
a modified version of the arcade game Space Invaders that 
prepared them to then learn a formal treatment on statistical 
distributions. By itself, the game showed little direct benefit 
for learning, but when combined with a formal exposition, 
students learned more from the exposition than otherwise 
equivalent students who had not played the game. 

What can we do about all these dichotomies?  It may be 
useful to notice that many of the dichotomies make one of 
the poles of the dichotomy something construable as “true 
understanding.” Rote memorization was contrasted with 
conceptual understanding. Attention to surface features was 
contrasted with attention to deep principles. Low-level per-
ception was contrasted with high-level abstract reasoning. It 
is a recurrent motif to contrast the upper reaches of human 
thought with the lower capabilities shared by animals. 

Overcoming dichotomania requires a more humble mind-
set. First, as we have proposed, what separates humans from 
animals is the ability to coordinate cognitive processes in 
concert with cultural demands and opportunities. Through 
this process of coordination, both the “bottom” and the “top” 
of cognition refashion one another. Humans are adaptive, 
and this should be the emphasis of our thinking about learn-
ing, not how one type of thinking is superior to another. 

Second, it is important to appreciate that even true under-
standings are always partial and fragmentary. A noteworthy 
attitude shared by many accomplished scholars is their insist-
ence on how much they, and we, do not yet understand. The 
dichotomous endpoint of “true understanding” is illusory, 
and a realization of this may yield a less disparaging atti-
tude toward the purported opposite pole. True and complete 
understanding certainly has its attractions over more brittle 
and biologically constrained forms of intelligence, but the 
latter have the distinct advantage of actually existing.

As part of a more humble attitude towards posing dichot-
omies, one also needs an attitude towards becoming more 
knowledgeable. The acceptance of dichotomies presupposes 
fixed poles, when they may not be fixed but rather grow with 
respect to one another. Creating dichotomous categories may 
be an important first step in making intellectual advances; it is 
native to human thought (Smith & Sera, 1992). Nevertheless, 
one should avoid becoming a satyr and running away from 
opportunities to grow beyond the opposition. 

In an analogous case, Carol Dweck (2012) has observed 
that people differ in their implicit views—their mindsets—
about the origins of human ability. Some people with a 
“fixed” theory believe that ability is largely innate. In con-
trast, those with a “growth” theory believe that ability results 
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from hard work. A “fixed” mindset has an analogous struc-
ture to dichotomania. A fixed mindset presupposes there are 
poles of “smart” and “not-so-smart” people, and there is no 
path from one to another. For dichotomania, one may feel 
that there are mutually exclusive cognitive processes, some 
being better than others, and with no bridge between.

Just as people who adopt a “growth” theory are more 
likely to achieve actual success, so our understanding of 
learning may be more successful if we adopt a growth theory. 
Such a perspective does not focus on the wide gap between 
the endpoints of putative dichotomies, but rather consid-
ers how different processes can be placed into productive 
relations. The point is to reflect not only on our lofty posi-
tions as intelligences capable of infinite flexibility, but also 
on how we can get to that point using finite means. By this 
account, properly harnessed and coordinated memory, per-
ception, action, habit formation, and attention processes can 
grow into a well-organized system that we take as showing 
improved educational outcomes.
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