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ABSTRACT
Modeling and predicting student learning is an important
task in computer-based education. A large body of work
has focused on representing and predicting student knowl-
edge accurately. Existing techniques are mostly based on
students’ performance and on timing features. However, re-
search in education, psychology and educational data mining
has demonstrated that students’ choices and strategies sub-
stantially influence learning. In this paper, we investigate
the impact of students’ exploration strategies on learning
and propose the use of a probabilistic model jointly repre-
senting student knowledge and strategies. Our analyses are
based on data collected from an interactive computer-based
game. Our results show that exploration strategies are a
significant predictor of the learning outcome. Furthermore,
the joint models of performance and knowledge significantly
improve the prediction accuracy within the game as well
as on external post-test data, indicating that this combined
representation provides a better proxy for learning.

CCS Concepts
•Applied computing → Computer-assisted instruc-
tion; Interactive learning environments; •Computing
methodologies → Knowledge representation and reason-
ing; Bayesian network models;

Keywords
probabilistic student models; learning; strategies; predic-
tion; simulations

1. INTRODUCTION
A major question for the design of computerized learning

environments is whether success within a learning environ-
ment translates to success outside of the environment. Many
data mining efforts have primarily focused on modeling and
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predicting performance within the trajectory of the learning
environment.

One of the most popular approaches to representing and
predicting student knowledge accurately is Bayesian Knowl-
edge Tracing (BKT) [13]. Predictive performance of the
original BKT model has been improved by applying clus-
tering [27] and individualization techniques [26, 39, 40, 42].
Other widely used student modeling approaches include la-
tent factors models [7, 8, 29] or dynamic Bayesian networks
(DBN) [12, 19, 20, 23]. Most of these models represent
student knowledge based on the students’ past performance
within the computerized learning environment, i.e., the stu-
dents’ answers to tasks are assessed and serve as observations
for the respective method. When the (predicted) student
knowledge within the learning environment does not fully
predict success outside of the environment, it may be nec-
essary to consider additional features such as engagement,
affect or learning behavior for student modeling.

It has been shown that features such as strategies or choices
influence the learning outcome. The strategies students’ ap-
plied in an educational game influenced their implicit science
learning [32, 15]. Furthermore, students inevitably have to
make choices when they learn, such as for example the deci-
sion about what and how to learn. Choice-based assessments
interpret students’ choices as an outcome of instruction and
use them as a proxy for students’ future learning [34]. By in-
tegrating choice-based assessments in short interactive com-
puter games, the influence of critical thinking [10], consul-
tation of literature [11], and feedback seeking behavior [14]
on the success outside the game was demonstrated.

Furthermore, there has been an increase in the use of
open-ended simulations [41] over the last decade. Ideally,
students explore different configurations of parameters to
infer the underlying principles. Under the best of circum-
stances, students learn the principles more deeply through
exploration than if they are simply told the principles and
asked to practice applying them [35]. Moreover, learning
how to explore a simulation or empirical phenomenon is a
major goal of science education in its own right. A sig-
nificant technical challenge involves evaluating exploration
choices to help predict student learning, perhaps with the
intent of intervening, characterizing students, or simply to
understand the exploratory behaviors worth teaching. If ex-
ploratory behaviors are relevant to learning, then we should
be able to detect exploration patterns that are associated
with learning outcomes and integrate these patterns into
our student models.



However, research on integrated models of performance
and strategies is sparse. While other additional features
influencing the learning outcome such as help-seeking [4,
30, 31] and off-task behavior [2, 3] have been integrated
or added to existing student modeling approaches, research
on students’ strategies in learning environments mainly fo-
cused on detecting [17, 32] player strategies in an educational
game, classifying students’ problem solving strategies [5, 24]
or modeling strategies using interaction networks [15, 16].
FAST [18] is a technique for integrating general features into
BKT. Dynamic mixture models [22] and DBNs [33] have
been used to trace student engagement and knowledge in
parallel. However, none of these existing models combine
the representation of performance and learning strategies.

In this paper, we demonstrate that including an analysis
of students’ exploration strategies within the game increases
our ability to predict out-of-game performance compared to
an analysis that only considers student success within the
game. We present a first-of-kind model for integrating ex-
ploratory behaviors and problem-solving success to predict
both in-game and out-of-game performance. Our work is
based on data collected with a short interactive computer-
based game assessing students’ exploration choices. The
game is centered around a tug-of-war topic and gives stu-
dents the possibility of simulating their own tug-of-war set-
ups and testing their knowledge about the (hidden) rules
(i.e., the forces) governing the tug-of-war. By extensively
analyzing the collected log-file data, we demonstrate that
students’ exploration choices and strategies significantly in-
fluence the learning outcome. Furthermore, we build a set
of simple probabilistic student models jointly representing
student knowledge and strategies and evaluate their predic-
tion accuracy within the computer-based game as well as on
an external post-test. Our results demonstrate that model-
ing the influence of learner strategies on student knowledge
significantly improves predictive performance and therefore
constitutes a better representation of learning.

2. BACKGROUND
Probabilistic graphical models are widely used for repre-

senting and predicting student knowledge and learning. One
of the most popular approaches is Bayesian Knowledge Trac-
ing (BKT). BKT represents student knowledge by employ-
ing one Hidden Markov Model (HMM) per skill. The latent
variable of the network represents (binary) student knowl-
edge. The observed variable models the binary answers (cor-
rect or wrong) of students to questions associated with the
respective skill. The model can be specified using five pa-
rameters. The transmission probabilities are described by
pL, the probability that a student learns a previously un-
known skill and pF , the probability of forgetting an already
learned skill. In traditional BKT, we assume pF = 0. The
emission probabilities of the model are specified using pG,
the probability of correctly applying an unknown skill and
pS , the probability of incorrectly answering a question as-
sociated with an already learned skill. Finally, p0 describes
the initial probability of knowing a skill a-priori. Given a
sequence of observations O1 = o1, O2 = o2, . . . , OT = oT the
learning task amounts to estimating the five parameters by
maximizing the likelihood function∑

L

p(O1, . . . , OT , L1, . . . , LT |p0, pT , pS , pG), (1)

where we marginalize over all the hidden states L. Max-
imization of the likelihood is relatively simple and is com-
monly performed using expectation maximization [9], brute-
force grid search [1] or gradient descent [42].

3. EXPERIMENTAL SETUP
All evaluations of this paper were conducted using data

from an interactive computer-game. In the following, we
describe the training environment, the associated post-test
as well as the collected data.

3.1 Training Environment
Learners need to make choices based on their prior knowl-

edge and the (imperfect) information available to them. Stu-
dents for example need to decide what and how to learn.
Choice-based assessments ‘measure’ students’ choices to get
a proxy for their future learning. These assessments give stu-
dents explicit opportunities to engage in learning behaviors,
such as seeking feedback, creating visualizations, or consult-
ing references. TugLet is a short, interactive computer-based
game assessing students’ exploration choices. The topic of
the game is a tug-of-war, modeled with respect to forces
and motion simulation. Each tug-of-war team consists of a
maximum of four team members. There are small (weight
w = 1), medium (w = 2), and large (w = 3) characters.
To determine the winning side, the strength of each party
needs to be computed, i.e., the weights need to be summed
up. The position of the weights does not matter. The stu-
dents are not told the relationships between the different
weights, they must be discovered by interacting with the
game. In the game, players explore by interacting with a
simulation: They can set up opposing tug-of-war teams and
see how they fare against each other. The player’s goal is
to figure out how a team’s size/weight corresponds with the
strength of its pull, so that they will be able to accurately
predict which team will win when presented with alternative
scenarios.

Students have the choice between two different activities:
Explore and Challenge. In the Explore mode (illustrated
in Figure 1 (left)), different characters can be set up and
the results can be viewed to induce and test hypotheses.
The Challenge mode tests the student’s knowledge about
the weights, i.e., the outcome of tug-of-war questions needs
to be predicted (see Figure 1 (right)). This mode consists of
eight questions ordered by increasing complexity. If a ques-
tion gets answered incorrectly, the student is put back into
Explore mode. The student is free to choose the Challenge
mode at any point in time. The game is over after correctly
answering eight Challenge questions in a row.

The interactive computer-game TugLet comes with an as-
sociated post-test, which assesses the students’ knowledge
about the rules (i.e., the weights and relationships of the
different characters) governing the tug-of-wars. The post-
test is a paper-and-pencil test consisting of ten questions.
Children are presented a fixed tug-of-war team for the left
side as well as ten different tug-of-war teams for the right
side. The task is to select all the cases resulting in a tie.
A summary sketch of the post-test is provided in Figure 2,
where ‘L’ denotes a large character, ‘M’ a medium character,
and ‘S’ stands for a small character.



Figure 1: Explore (left) and Challenge (right) activities for TugLet. Students are free to enter Challenge mode
at any point in time by clicking on the Challenge button (left).
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Figure 2: In the post-test, children have to select the
cases resulting in a tie. The second case for example
results in a tie, since the weight of three small (S)
characters is equal to the weight of one large (L)
character.

3.2 Data Set
The data set used consists of 127 students (68 male, 59 fe-

male) in the 8-th grade of a middle school. The students had
no prior experience with the topic from the science curricu-
lum. Students played TugLet for a maximum time of 15 min-
utes, followed by a short paper-and-pencil post-test. During
game play, all the prompts were recorded in log files. Chil-
dren solved on average 44.2 challenge questions (σ = 33.3).
They spent 42% of their time in the Explore mode. Most of
the students (n = 111) successfully completed all challenge
questions. The average accuracy in the post-test was 0.76
(σ = 0.20), n = 31 students had a perfect post-test.

4. KNOWLEDGE REPRESENTATION
We represent the knowledge of the students as a set of

rules describing the relationships between the weights of the
different characters. The winning side of a specific tug-of-
war configuration is then determined by iteratively applying
the available rules. The complete TugLet rule set consists
of n = 12 rules R = {Ri} with i ∈ {1, . . . , n} and is listed
in Table 1. Remember that a large character has a weight
of w = 3, a medium character weighs w = 2 and the weight
of a small character is w = 1. The rule set R consists of
nine rules describing inequality and equality relationships
between the different characters (weights). Furthermore,
three meta-rules define basic tug-of-war concepts. Rule R10

states that if the left and right team have the exact same
number of characters (and weights), the configuration will
result in a tie. In rule R12 the fact that more characters
of the same weight are stronger (i.e., three small charac-
ters will win against two small characters) is recorded. Rule
R11 finally allows for canceling out characters with the same
weight on both sides. If the left team for example consists of
a large and a medium character and the right side contains
a medium and a small character, R11 can be applied to can-
cel out the medium characters. The rule set in R contains
all the rules necessary to solve all possible configurations in
the game as well as in the post-test. Note that already a
subset of the rules would (theoretically) be enough to de-
rive the relationships between the weights of all characters.
The rules R1, ..., R4 and R7, ...R9 can for example be derived
from rules R5 and R6. This hierarchy of the rule set is nec-
essary, since the students tend to learn in smaller steps, i.e.,
they test simpler hypotheses first (e.g., ‘Large > Small’),
and since the questions in Challenge mode are ordered by
complexity. The final rule set R therefore is the subset of
all possible correct rules necessary to determine the winning
side of all tug-of-war set-ups encountered in TugLet and in
the associated post-test.

Each tug-of-war configuration is associated with a subset
RN ⊆ R of rules necessary to determine the winning side.
The calculation of RN is performed as follows: each rule



Table 1: Rule set R representing the domain knowl-
edge in TugLet.

Rule Description

R1 Large > Small

R2 Large > Medium

R3 Medium > Small

R4 Large > 2·Small

R5 Large = 3·Small

R6 Medium = 2·Small

R7 Large = Medium+Small

R8 2·Medium > Large

R9 Small+Large = 2·Medium

R10 Equality

R11 Cancellation

R12 More is better

R6

R3

S S S

SM

M M

Figure 3: Example tug-of-war configuration with
two medium (M) and three small (S) characters.
The winning side can be determined by applying
the rule set RN = {R3, R6}.

Ri ∈ R has a set of conditions attached under which this
specific rule can be applied. Rule R6 for example requires
the presence of at least one medium character on the left
(or right) side, respectively and a minimum of two small
characters placed on the right (or left) side, respectively. To
build RN , the system iterates through the rules Ri ∈ R and
applies them, until no more rule can be applied and hence
the winning side is determined. During this process, simpler
rules describing basic relationships between characters (e.g.,
R1 or R2) are prioritized. The resulting rule set RN consists
of all the applied rules. Figure 3 shows the rule set RN for
an example configuration, where ‘L’ denotes a large weight,
‘M’ a medium weight and ‘S’ stands for a small weight.

During game play, the students are exposed to the rules
when testing out tug-of-war configurations in the Explore
mode and when answering questions in Challenge mode. We
assume that each tug-of-war configuration encountered pro-
vides an opportunity for learning. The rules, which can be
acquired (or strengthened) from a specific configuration are
exactly the rules Ri ∈ RN associated with the given config-
uration.
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Figure 4: Comparison of student trajectories. Each
circle (or cross) denotes exactly one challenge at-
tempt of one student, i.e., a circle at (2, 5) means that
the student answered five (out of eight) questions
correctly at his 2nd attempt to pass the Challenge
mode. The size of the circle denotes the number
of explored tug-of-war set-ups right before challeng-
ing, a cross means that zero set-ups were simulated.
Challenge attempts of students with a perfect post-
test are colored in red.

5. EXPLORATION STRATEGIES
To analyze the influence of students’ exploration choices

and behavior, we mined the log file data collected with Tu-

gLet as well as the external post-test data (see Section 3.2).
While 87% of the students passed the TugLet game, i.e.,

managed to answer all eight challenge questions at the end
of the training, post-test performance is mixed. While the
top 24% of the students have a perfect post-test, the bot-
tom 20% reach an accuracy (ratio of correct answers) less
or equal than 0.5. Therefore, the students’ training perfor-
mance measured by there answers in Challenge mode seems
to describe the learning and knowledge of the students in-
sufficiently.

Therefore, we investigated students’ exploration behavior
by analyzing their trajectories through the game as well as
by examining students’ specific hypotheses. Figure 4 illus-
trates the trajectories of the students within the game. The
x-axis denotes the number of attempts so far in passing the
Challenge mode, the y-axis denotes the level (number of
correctly answered questions) reached: each circle or cross
in Figure 4 denotes a challenge attempt of a student. A
circle (or cross) at (4, 5) means that the student answered
five (out of eight) questions correctly at his 4th attempt to
pass the Challenge mode. The size of the circles denotes the



Figure 5: Example student trajectories. The x-axis
denotes the number of challenge attempts, the y-axis
the level (number of correctly answered questions)
reached in the actual attempt. The width of the
bar shows the number of exploration set-ups tested
right before the actual challenge attempt.

number of tug-of-war set-ups simulated in the Explore mode
right before changing to Challenge mode. A cross signifies
that no set-ups were simulated, i.e., the student changed
right back to Challenge mode. Attempts of students with a
perfect post-test are marked in red, the attempts of all other
students are colored in blue. Figure 4 shows that while the
students with a perfect post-test pass the game soon, other
students need a lot of attempts in Challenge mode before
passing. Indeed, there is a significant negative correlation
(ρ = −0.28, p = .001) between the number of challenge at-
tempts and the achieved post-test accuracy. Figure 4 also
demonstrates that the better performing students exhibit
a different behavior regarding exploration than those stu-
dents with lower post-test accuracies. At the beginning, all
the children test many tug-of-war set-ups, this number de-
creases over time (as visible from the decreasing circle sizes
as well as the many crosses). Therefore, there is no signifi-
cant correlation between the post-test performance and the
number of tug-of-war set-ups tested before the first chal-
lenge attempt (p = .203). However, while the students with
perfect post-test tend to test (few) tug-of-war set-ups in-
between two challenge attempts, students with lower post-
test accuracy stop exploring completely as can be seen from
the many blue crosses in Figure 4. Indeed, the average num-
ber of tug-of-war set ups tested in Explore mode in-between
two attempts to pass the Challenge mode is positively cor-
related to post-test accuracy (ρ = 0.18, p = .048).

Figure 5 illustrates the trajectories of four example stu-
dents. The x-axis again shows the number of attempts in

passing the Challenge mode, the y-axis shows the achieved
level (number of correctly answered questions). The width
of the bar denotes the number of tug-of-war set-ups tested
before changing to Challenge mode. Student B and Student
C had a perfect post-test, while the post-test accuracy of
Student A and Student D was below 0.5. The sample tra-
jectories confirm that students with low performance need
more challenge attempts to pass the game. It seems that,
while all students spend much time in Explore mode in the
beginning, students performing badly in the post-test give
up exploration much earlier. Student C is an exception: this
student does not explore in the beginning, but realizes later
that he will not pass without doing so. Student D persists,
but does not seem to profit from the investigated tug-of-war
set-ups.

We hypothesize that the reason behind these observations
might be the fact that the conclusions drawn in the Explore
mode are of higher value for the good performers, i.e., that
the good performers test more informative tug-of-war set-
ups. Figure 6 illustrates this behavior. The initial part of
the trajectories of Student B (left) and Student A (right)
are displayed. In the initial explore phase, both students
exhibit similar exploration strategies. They test hypothe-
ses such as equality (tug-of-war set-ups 1 and 4 of Student
A), position independence (tug-of-war set-ups 2 and 5 of
Student B), and relationships between the weights of the
characters (tug-of-war set-up 3 of Student A). Note that
during the first exploration phase, the characters available
for simulation are limited: only one large and one small
character are provided for each team. After the first wrong
answer in Challenge mode, the students are put back into
Explore mode and have the full set of characters available
for hypothesis testing. Now the wheat is separated from the
chaff. Student B (see Figure 6 (left)) systematically tests
tug-of-war set-ups exploring the relationships between the
different characters leading to the (possible) derivation of
rules R6, R4, and R5 (see Table 1). Student A on the other
hand seems overcharged with the many characters available
for testing. As we can see from Figure 5, Student A ex-
plores once more before the third challenge attempt, but
completely quits exploring later on.

Given these observations, we divide all tug-of-war set-ups
tested in the Explore mode into three categories: ‘strong’,
‘medium’, ‘weak’. This categorization is computed automat-
ically based on the set of rules RN necessary to determine
the winner of the given tug-of-war configuration. We found
that a good exploration strategy focuses on isolating one
underlying principle at a time. Therefore, a set-up is con-
sidered as ‘strong’, if |RN | = 1 and Ri ∈ RN is seen for
the first time, i.e., the student tests exactly one new rule.
If the rule Ri has been tested or seen previously, the set-up
is categorized as being ‘medium’. If the set-up tests two
rules, i.e., |RN | = 2 and R11 ∈ RN the tested configura-
tion is labeled as a ‘medium’ hypothesis. We assume that
the student could still draw conclusions (i.e., find a new rule
Ri) by first applying the cancellation rule R11 (see Section
4 and Table 1) and thus reducing the configuration to a
set-up testing exactly one rule. If |RN | = 2 ∧ R11 /∈ RN ,
the tested set-up is put into the ‘weak’ category. We also
categorize tug-of-war set-ups as being ‘weak’ hypotheses if
they require more than two rules to determine the winning
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Figure 6: Comparison of initial tug-of-war set-ups
for Student B (left) and Student A (right). While
they exhibit similar exploration strategies in the be-
ginning, strategies start to differ considerably with
increasing difficulty.

side, i.e., if |RN | > 2. A set-up testing too many princi-
ples at the same time does not allow to draw conclusions on
relationships between single characters. An analysis of the
training data reveals, that better performers indeed seem to
have superior exploration strategies: there is a significant
positive correlation between the number of ‘strong’ tug-of-
war set-ups tested and the achieved accuracy in the post-test
(ρ = 0.21, p = .019).

6. PROBABILISTIC MODELS OF
STRATEGIES

To investigate the benefits of modeling performance and
strategies jointly, we constructed probabilistic graphical mod-
els representing student knowledge and exploration behavior
in one network and evaluated their predictive performance
within the TugLet environment as well as in the post-test.

6.1 Simple Probabilistic Models
To model the learning process of the students and to make

predictions about their performance in the game as well as in
the post-test, we build probabilistic graphical models based
on the representation of domain knowledge as a set of rules
(see Section 4).

Pure Challenge Model. The pure challenge model (PCM)
is a HMM, employing one model per rule. Figure 7 illustrates

KR ,1i

OR ,1i

KR ,2i

OR ,2i

KR ,Ti

OR ,Ti

p0

p , pG S p , pG S p , pG S

p , pL F p , pL F p , pL F

Figure 7: Structure of the graphical model over T
time steps for the PCM, the CHM and the WHM.

the structure of the graphical model. The binary latent vari-
able KRi,t represents, whether the student has mastered rule
Ri at time t. The observed variable ORi,t is also binary and
indicates, whether a student has correctly applied Ri at time
t. Correctness is encoded as follows: If a student answers
a challenge question at time t correctly, we assume that all
rules Ri ∈ RN have been applied correctly, i.e., oRi,t = 1,
∀Ri ∈ RN . If the student gives an incorrect answer, we as-
sume the all rules Ri ∈ RN have been applied incorrectly,
i.e., oRi,t = 0, ∀Ri ∈ RN . This encoding method also in-
fluences prediction: the predicted probability p̂C,t that the
student will correctly determine the winning team of a tug-
of-war configuration C at time t depends on the predicted
probabilities p̂(ORi,t = 1) of the rules Ri ∈ RNC :

p̂C,t =
∏
Ri

p̂(ORi,t = 1), Ri ∈ RNC . (2)

While this model is based on BKT, we allow a small
amount of forgetting (pF > 0). Note that in the PCM,
we do not represent actions performed in the Explore mode.

Correct Hypotheses Model. The correct hypotheses
model (CHM) is an extension of the PCM. It again employs
one HMM per rule (see Figure 7) and the interpretations
of the latent and observed variables are accordingly. We
encode the answers to the challenge questions in the same
way as for the PCM. However, in contrast to the challenge
model, the CHM also incorporates the actions performed in
Explore mode. For each tug-of-war set-up H tested in the
Explore mode, the rule set RNH necessary to find the win-
ning side of the simulated set-up are computed. We then
assume that all rules in RNH have been applied correctly,
i.e., oRi,t = 1, ∀Ri ∈ RNH .

6.2 Modeling Strategies
Both the PCM and the CHM are variations of BKT mod-

els and therefore allow for efficient parameter learning and
predictions. However, the two models do not (in case of the
PCM) or only in a limited way (in case of the CHM) take the
exploration behavior of the students into account. Yet, our
data analysis has shown that students’ exploration choices
and strategies are significantly correlated to the learning out-
come (see Section 5).

Weighted Hypotheses Model. The weighted hypotheses
model (WHM) is based on the observation that exploration
behavior significantly influences post-test performance. It
again employs one HMM per rule and uses the graphical
structure illustrated in Figure 7. The binary latent vari-



ables KRi,t again denote, whether the student has mastered
rule Ri. The observed variables ORi,t are also binary and
denote an application of rule Ri when answering a challenge
question C or the testing of a rule Ri in a tug-of-war set-up
H in Explore mode. We encode answers in Challenge mode
as described in the PCM (see Section 6.1) and rules encoun-
tered in Explore mode as explained in the CHM (see Section
6.1). However, the WHM introduces a weighting of the dif-
ferent observations. Observations associated with a tested
tug-of-war set-up are weighted according to the three cat-
egories ‘strong’, ‘medium’, ‘weak’ as defined in Section 5.
Challenge answers are weighted differently based on their
correctness. The sequence of T observations oRi for a rule
Ri is therefore given by

oRi = (ow1
Ri,1

, ow2
Ri,2

, ..., owt
Ri,T

), (3)

with weights wj , j ∈ 1, ..., T specified as follows:

wj =



whs oRi,j is a strong hypothesis.

whm oRi,j is a medium hypothesis.

whw oRi,j is a weak hypothesis.

wcw oRi,j is a wrong challenge answer.

wcs oRi,j is a correct challenge answer.

(4)

The weights w = (whs, whm, whw, wcw, wcs) are positive
integers and can be learned from the collected data using
cross validation.

6.3 Experimental Evaluation
We evaluated the predictive accuracy of our models within

the TugLet environment as well as on the post-test using
the data set described in Section 3.2. We used a train-test
setting, i.e., parameters were fit on the training data set
and model performance was evaluated on the test set. All
the models were fit using a Nelder-Mead (NM) optimiza-
tion [25]. The NM algorithm is often used for optimization
problems due to its simplicity and fast convergence rate.
Predictive performance was evaluated using the root mean
squared error (RMSE) as well as the area under the ROC-
curve (AUC). The RMSE is widely used for the evaluation
of student models, e.g., [26, 39, 40, 42]. The AUC is a useful
additional measure to assess the resolution of a model.

Within-Game Prediction. The prediction accuracy of
the PCM and the CHM models on the log files collected
from TugLet was evaluated using student-stratified (i.e. di-
viding the folds by students) 10-fold cross validation. Since
the estimation of model performance during parameter tun-
ing leads to a potential bias [6, 38], we use a nested 10-fold
student-stratified cross validation to estimate the predictive
performance of the WHM and to at the same time learn the
optimal weights wopt for this model. We used r = 50 random
re-starts for the NM algorithm for all models, since the NM
algorithm is known for being trapped into local optima and
to be sensitive to the initial starting values [25, 28]. We used
the same parameter constraints for all models: pi ≤ 0.5, if
i ∈ {L,F,G, S}. The prior probability p0 remained uncon-
strained. Figure 8 displays the RMSE and the AUC for the
PCM, CHM, and WHM models.

The WHM demonstrates the highest prediction accuracy
within the game (RMSEWHM = 0.3328). The inclusion of
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Figure 8: Comparison of within-game prediction
accuracy of the PCM (modeling knowledge only),
CHM (modeling knowledge and exploration) and
WHM (modeling knowledge and exploration strate-
gies).

Table 2: Mean pair-wise differences µ in RMSE be-
tween the models along with confidence intervals ci
and significance values p for the within-game predic-
tion.

Mean µ 95% ci of µ p

dPCM,CHM 0.0092 [-0.0055,0.0239] .309

dPCM,WHM 0.0240 [-0.0093,0.0387] <.001

dCHM,WHM 0.0148 [-0.0001,0.0296] <.05

exploration choices into the model led to an improvement
in RMSE by 2.6% (RMSEPCM = 0.3574, RMSECHM =
0.3480), the representation of strategies further reduced the
RMSE by 4.4% (RMSECHM = 0.3480, RMSEWHM =
0.3328). A one-way analysis of variance performed on the
per-student RMSE of the different models shows that there
are indeed significant differences between the mean RMSEs
of the different models (F = 7.45, p < .001). The results of
multiple comparisons (using a Bonferroni-Holm correction)
between the different models are listed in Table 2. There is
no significant difference in performance between the PCM
and the CHM models. However, the WHM significantly out-
performs the PCM and CHM models. All three models are
performing well in discriminating challenges from failures
(AUCPCM = 0.7985, AUCCHM = 0.7874, AUCWHM =
0.7954), there are no significant differences in AUC between
the models.

The optimal weights found for the WHM are wopt =
{3, 1, 1, 1, 2}. Tug-of-war set-ups classified as ‘strong’ hy-
potheses have a higher impact than set-ups falling in the
‘medium’ or ‘weak’ categories (whs = 3, whm = 1, whw = 1).
‘Strong’ hypotheses are also assigned more weight than cor-
rect answers to challenge questions (whs = 3, wcs = 2).
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Figure 9: Comparison of post-test prediction accu-
racy along with standard deviations for the PCM
(modeling knowledge only), CHM (modeling knowl-
edge and exploration) and WHM (modeling knowl-
edge and exploration strategies).

Post-Test Prediction. To evaluate the predictive perfor-
mance of the different models on the post-test, we used all
within-game observations (i.e., actions performed within the
TugLet environment) for training and predicted the outcome
of the external post-test. We again used r = 50 random re-
starts for the NM algorithm. We constrained the parameters
of all models as described for the within-game prediction:
pi ≤ 0.5, if i ∈ {L,F,G, S}. The prior probability p0 re-
mained unconstrained. For the WHM, we can safely use
the optimal weights wopt = {3, 1, 1, 1, 2} found in the nested
cross validation, since this optimization was performed on
within-game data only. Prediction accuracy in terms of the
RMSE and the AUC was computed using bootstrap aggrega-
tion with re-sampling (b = 100). Figure 9 displays the error
measures (with standard deviations) for the PCM, CHM,
and WHM models.

The WHM shows the best performance for both error
measures. Modeling exploration behavior even in a sim-
plistic way leads to an improvement in RMSE of 4.55%
(RMSEPCM = 0.4370, RMSECHM = 0.4171), categoriza-
tion of the different explored set-ups along with the intro-
duction of weighted observations decreases the RMSE by an-
other 7.6% (RMSECHM = 0.4171, RMSEWHM = 0.3854).

The low standard deviations in RMSE (σPCM = 0.0079,
σCHM = 0.0094, σWHM = 0.0131) indicate significant dif-
ferences between the different models. A one-way analysis
of variance confirms that there are indeed significant dif-
ferences between the mean RMSEs of the different models
(F = 633.46, p < .001). Multiple comparisons (using a
Bonferroni-Holm correction) between the mean RMSEs of
the different models demonstrate that all model means are
significantly different from each other. Table 3 illustrates
this fact: The 95% confidence intervals for the differences in
RMSE between the models do not include zero.

The WHM also exhibits a higher AUC than the PCM

Table 3: Mean pair-wise differences µ in RMSE be-
tween the models along with confidence intervals ci
and significance values p.

Mean µ 95% ci of µ p

dPCM,CHM 0.0199 [0.0165,0.0233] <.001

dPCM,WHM 0.0517 [0.0483,0.0551] <.001

dCHM,WHM 0.0318 [0.0284,0.0352] <.001

Table 4: Mean pair-wise differences µ in AUC be-
tween the models along with confidence intervals ci
and significance values p.

Mean µ 95% ci of µ p

dPCM,CHM -0.0065 [-0.0021,0.0151] 0.184

dPCM,WHM -0.0209 [-0.0295,-0.0123] <.001

dCHM,WHM -0.0273 [-0.0359,-0.0187] <.001

and the CHM (AUCPCM = 0.5956, AUCCHM = 0.5891,
AUCWHM = 0.6164). Although the standard deviations
(σPCM = 0.0246, σCHM = 0.0283, σWHM = 0.0248) are
higher than for the RMSE, a one-way analysis of variance
suggests that the mean AUCs of the different models are
not the same (F = 30.22, p < .001). The multiple compar-
isons (employing a Bonferroni-Holm correction) between the
mean AUCs demonstrate that while the differences between
the PCM and the CHM are not significant, the WHM
significantly outperforms the other two models. Table 4 lists
the mean values µ for the differences between the models’
average AUCs along with 95% confidence intervals and sig-
nificance values.

7. DISCUSSION AND CONCLUSION
The strategies and choices of students in a learning envi-

ronment have a significant influence on their learning out-
come. Previous work has shown that strategies used vary
considerably across students [36, 37]. Furthermore, stu-
dents’ abilities in critical thinking [10], their literature in-
quiries [11], and their feedback seeking behavior [14] have a
significant impact on the learning outcome.

Recent research in educational data mining has investi-
gated the strategic behavior of children in games. However,
most of this work has focused on the data mining part, i.e.,
measuring implicit science learning based on player moves in
an educational game [17, 32] or the classification of problem
solving strategies [5, 24]. Research on the modeling part
has focused on representing the problem solving behavior
only [15].

In contrast to previous work, we represent student knowl-
edge and exploration strategies jointly in one model. Our
work is comparable to research on engagement modeling,
where student knowledge and engagement are simultane-
ously traced [33]. FAST [18] also allows for the integration
of additional features into a BKT model, however, these ad-
ditional features influence prediction of the observed state
only. In contrast to this approach, in our joint model of
knowledge and strategy, the strategies directly influence the
(hidden) knowledge state. This technique allows us to pre-
dict performance on an external post-test, where informa-



tion about strategies is not available.
Our results demonstrate that even simple probabilistic

models of strategies offer a better representation of learn-
ing than a pure performance model. Modeling the strength
of student hypotheses leads to a small, but significant im-
provement of 6.9% of the RMSE (RMSEPCM = 0.3574,
RMSEWHM = 0.3328), when predicting students’ answers
to challenge questions within the learning environment. Im-
provements are much larger for the post-test: the joint repre-
sentation of performance and strategies improves the RMSE
by 11.8% (RMSEPCM = 0.4370, RMSEWHM = 0.3854).
Modeling strategies also improves the AUC in the post-test,
i.e., the WHM is better at discriminating failures (incor-
rectly answered challenge questions) from successes than the
PCM. The increased prediction accuracy on the post-test
demonstrates that 1) using probabilistic models of strate-
gies, we are able to improve the detection of ‘shallow’ learn-
ing [21]: From the 111 students passing the game (measured
by an assessment of their performance), 21 students achieved
an accuracy less or equal than 0.5 on the post test. The bet-
ter predictive performance on the post-test also shows that
2) simple probabilistic models representing performance and
knowledge jointly are superior at identifying understanding.
The post-test required a higher level of rule understanding
and also a transfer, since tasks were asked in a different way
than in the game (selecting tug-of-war set-ups resulting in a
tie vs. determining the outcome of a given tug-of-war set-
up).

The improved predictive performance of our joint repre-
sentation of strategies and performance as well as the signifi-
cant correlations found between exploration choices, strength
of hypotheses and the learning outcome confirm the findings
of previous work: Students’ choices [10, 11, 14] and learning
strategies [15, 32] have a significant impact on the learn-
ing outcome. These findings give important directions for
assessment: not only performance data, but also students’
strategies and choices need to be measured to reliably pre-
dict future learning.

The strategies represented in our models are of course spe-
cific to the presented educational game. They can, however,
be generalized to the inquiry strategies of simplification and
testing one principle at a time. In future work, we would
therefore like to model these inquiry strategies for different
educational games and simulations in order to analyze and
demonstrate the generalizability of our models.

To conclude, we have proposed the use of probabilistic
graphical models jointly representing student knowledge and
strategies. Our results demonstrate that simple probabilis-
tic models of strategies are sufficient to significantly improve
prediction accuracy. Furthermore, we have shown that stu-
dents’ strategies significantly influence the learning outcome
and therefore, augmented models are a better predictor for
learning than pure performance models.

8. REFERENCES
[1] R. S. Baker, A. T. Corbett, S. M. Gowda, A. Z.

Wagner, B. A. MacLaren, L. R. Kauffman, A. P.
Mitchell, and S. Giguere. Contextual Slip and
Prediction of Student Performance after Use of an
Intelligent Tutor. In Proc. UMAP, pages 52–63, 2010.

[2] R. S. Baker, A. T. Corbett, and K. R. Koedinger.
Detecting Student Misuse of Intelligent Tutoring
Systems. In Proc. ITS, pages 531–540, 2004.

[3] R. S. J. d. Baker, A. T. Corbett, I. Roll, and K. R.
Koedinger. Developing a generalizable detector of
when students game the system. User Modeling and
User-Adapted Interaction, 18(3):287–314, 2008.

[4] J. E. Beck, K.-m. Chang, J. Mostow, and A. Corbett.
Does Help Help? Introducing the Bayesian Evaluation
and Assessment Methodology. In Proc. ITS, pages
383–394, 2008.

[5] P. Blikstein. Using Learning Analytics to Assess
Students’ Behavior in Open-ended Programming
Tasks. In Proc. LAK, pages 110–116, 2011.

[6] A.-L. Boulesteix and C. Strobl. Optimal classifier
selection and negative bias in error rate estimation: an
empirical study on high-dimensional prediction. BMC
Medical Research Methodology, 9(1):85+, 2009.

[7] H. Cen, K. R. Koedinger, and B. Junker. Is Over
Practice Necessary? -Improving Learning Efficiency
with the Cognitive Tutor through Educational Data
Mining. In Proc. AIED, pages 511–518, 2007.

[8] H. Cen, K. R. Koedinger, and B. Junker. Comparing
Two IRT Models for Conjunctive Skills. In Proc. ITS,
pages 796–798, 2008.

[9] K.-M. Chang, J. Beck, J. Mostow, and A. Corbett. A
Bayes Net Toolkit for Student Modeling in Intelligent
Tutoring Systems. In Proc. ITS, pages 104–113, 2006.

[10] M. Chi, D. L. Schwartz, K. P. Blair, and D. B. Chin.
Choice-based Assessment: Can Choices Made in
Digital Games Predict 6th-Grade Students’ Math Test
Scores? In Proc. EDM, pages 36–43, 2014.

[11] D. B. Chin, K. P. Blair, and D. L. Schwartz. Got
game? A choice-based learning assessment of data
literacy and visualization skills. Technology,
Knowledge, and Learning, 21:195–210, 2016.

[12] C. Conati, A. Gertner, and K. VanLehn. Using
Bayesian Networks to Manage Uncertainty in Student
Modeling. UMUAI, 12(4):371–417, 2002.

[13] A. T. Corbett and J. R. Anderson. Knowledge
Tracing: Modeling the Acquisition of Procedural
Knowledge. UMUAI, 4(4):253–278, 1994.

[14] M. Cutumisu, K. P. Blair, D. B. Chin, and D. L.
Schwartz. Posterlet: A Game-Based Assessment of
Children’s Choices to Seek Feedback and to Revise.
Journal of Learning Analytics, 2(1):49–71, 2015.

[15] M. Eagle and T. Barnes. Exploring Differences in
Problem Solving with Data-Driven Approach Maps. In
Proc. EDM, pages 76–83, 2014.

[16] M. Eagle, D. Hicks, B. Peddycord, III, and T. Barnes.
Exploring Networks of Problem-Solving Interactions.
In Proc. LAK, pages 21–30, 2015.

[17] M. Eagle, E. Rowe, D. Hicks, R. Brown, T. Barnes,
J. Asbell-Clarke, and T. Edwards. Measuring Implicit
Science Learning with Networks of Player-Game
Interactions. In Proc. CHI in Play, pages 499–504,
2015.
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