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Abstract 

This chapter considers psychological and neuroscience research on how people 

understand the integers, and how educators can foster this understanding. The core proposal is 

that new, abstract mathematical concepts are built upon known, concrete mathematical concepts. 

For the integers, the relevant foundation is the natural numbers, which are understood by 

reference to a mental number line (MNL). The integers go beyond the natural numbers in 

obeying the additive inverse law: for any integer x, there is an integer -x such that x + (-x) = 0. 

We propose that practicing applying this law, such as when students learn that the same quantity 

can be added or subtracted from both sides of an equation, transforms the MNL. In particular, 

perceptual mechanisms for processing visual symmetry are recruited to represent the numerical 

symmetry between the integers x and -x. This chapter reviews psychological and neuroscience 

evidence for the proposed learning progression. It also reviews instructional studies showing that 

the hypothesized transformation can be accelerated by novel activities that engage symmetry 

processing compared to conventional activities around number lines and cancellation. 

Ultimately, these instructional insights can guide future psychological and neuroscience studies 

of how people understand the integers in arithmetic and algebraic contexts. 

 

Keywords: integers, distance effect, intraparietal sulcus, mental number line, additive 

inverse law, symmetry processing, analog-x model, bundling hypothesis 
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Chapter 14 

Cognitive Science Foundations of Integer Understanding and Instruction 

When psychology and neuroscience ask how people understand mathematical concepts, 

they search for fundamental mechanisms of mind and brain. Studies from these fields have 

demonstrated that adults possess magnitude representations on which natural number concepts 

are constructed (Moyer & Landauer, 1967); have tracked the increasing precision of these 

representations over development (e.g., Sekuler, & Mierkiewicz, 1977; Xu & Spelke, 2005); and, 

have identified neural correlates of these representations (e.g., Pinel, Dehaene, Rivière, & Le 

Bihan, 2001). Central to cognitive science is the question of how these basic cognitive capacities 

are organized to understand culturally constructed number systems.  

Education asks a different question. What experiences best support the learning of new, 

evermore abstract mathematical concepts? Research, for example, has investigated the ideal 

sequencing of concepts and procedures in mathematics instruction (Rittle-Johnson, Schneider, & 

Star, 2015; Rohrer & Taylor, 2007). It has also examined how to use concrete manipulatives to 

teach more abstract concepts (e.g., Martin & Schwartz, 2005). Ideally, the work of cognitive 

science can inform the educational enterprise of improving learning.  

In this chapter, we develop the cognitive science foundations of how people understand 

integers and how these foundational insights contribute to instruction. The integers consist of a 

perceptually available number class, the natural numbers {0, 1, 2, …}, coupled with the much 

less perceptually obvious negative integers {-1, -2, …}. When walking in the woods, people can 

count the number of squirrels on their fingers, but they will not have an easy way to count the 

number of negative squirrels.  
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The integers are a relatively new human construction. The concept of negative numbers 

as debts arose as early as 250 BCE in China and 7th century India, but for much of history the 

idea of negative numbers was absurd, and the modern system of negative numbers did not arise 

until the 19th century (Gallardo, 2002; Hefendehl-Hebeker, 1991). The integers provide an 

excellent point of contact for psychology, neuroscience, and education, because they are an 

important abstract concept that students need to learn. They also represent a quantitative system 

that is culturally constructed. Unlike the perceptual sense of magnitude, which helps understand 

that 5 is bigger than 4, negative numbers do not exhibit an obvious mapping to basic perceptual 

abilities. Thus, they represent a test-bed for researchers from all three disciplines to study how an 

abstract mathematical concept can be nurtured from fundamental cognitive and perceptual-motor 

capacities.  

 

14.1 A Learning Progression for Integer Understanding 

How might one understand numerical expressions such as “-4”, questions about 

magnitude such as which is greater -4 or 3, and questions about arithmetic expressions such as “-

4 + 3”? One intuition might be that people do so by reference to a mental number line (MNL), 

organized and oriented in the mind’s eye in the same way as physical number lines are organized 

and oriented in the world. Zero would be in the middle, negative integers on the left side, and 

positive integers on the right. We call this model analog+ because it extends the well-established 

MNL for natural numbers (Moyer & Landauer, 1967; Sekuler, & Mierkiewicz, 1977). 

An alternative intuition might be that negative integers are too abstract to represent 

directly, and that people reason about them using positive numbers and rules for manipulating 

the negative and positive signs. For example, to decide if -4 is less than -7, one might reason that 
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7 is greater than 4, but with negative numbers, one reverses the decision, so -4 is greater than -7. 

To decide if -4 is greater than 3, one might apply a rule that negative numbers are always less 

than positive numbers. We call this model symbol+ under the assumption that mapping is via 

symbolic rules, and negative magnitudes are not accessed directly. 

Recent research indicates both analog+ and symbol+ have merit. People obviously can 

reason about integers in these ways, as demonstrated by the fact that one can understand the 

verbal descriptions of each model in the preceding paragraphs. Surprisingly, however, adults 

appear to rely on yet a third model that lends more sophistication to their abilities to reason about 

integers. In the following, we describe this model and offer hypotheses for how it develops and 

how instruction can support it.  

In doing so, we build on our earlier proposals (Blair, Tsang, & Schwartz, 2014; Schwartz, 

Blair, & Tsang, 2012) to develop a learning progression for how people come to understand 

abstract mathematical concepts such as the integers. This proposal is depicted in Figure 14.1. 

New mathematical concepts are built upon known mathematical concepts, but they can also 

incorporate additional perceptual primitives that provide structure not found in the original 

mathematical concepts.  

For the integers, the relevant foundational concepts come from knowledge of the natural 

numbers. As previewed above, psychological and neuroscience evidence suggests that natural 

numbers are understood by reference to magnitude representations organized as an MNL. These 

representations support judgments such as deciding which of 1 and 9 is greater.  
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Figure 14.1 Learning progression for integer understanding. People understand the natural 

numbers using magnitude representations. Initially, they reason about integers directly, by using 

the rules of the defining symbol system, most notably the additive inverse principle (symbol+). 

Through experiences with balancing equations, they recruit symmetry processing, transforming 

their mental representation of integers to directly reflect the additive inverse principle (analog-x). 

The transformed representation supports learning of advanced mathematical concepts. 

 

When people first learn about the integers, they reason about them using the rules of the 

governing symbol system, i.e., according to symbol+. This is not surprising: Conventional 

classroom instruction introduces procedures for handling this new, abstract number class by 

reference to the procedures for handling natural numbers – the more concrete number class that 

children have already mastered. 

Children learn the integers, but the standard instruction does not capture the key law that 

creates the class of integers. This is the additive inverse law, which states that any integer plus its 

“inverse” equals zero: x + -x = 0. Our proposal is that as children learn algebra, they practice 

magnitude 
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applying the additive inverse law in its colloquial form: the same quantity can be added or 

subtracted from both sides of an equation. This practice transforms their understanding of 

integers, extending the MNL for natural numbers “to the left” of zero, to also include the 

negative integers. Critically, this new MNL is not a simple extension of the positive number line 

as suggested by analog+, but rather a transformation that incorporates the symmetry between 

pairs of additive inverses x and –x in a novel way. In doing so, it combines the mind’s capacity 

for representing magnitudes with its capacity for processing symmetry. We call this transformed 

mental representation analog-x.  

In the remainder of this chapter, we develop the case for the learning progression 

depicted in Figure 14.1. We begin with a review of psychological and neuroscience studies of 

how adults mentally represent the integers, and how this representation shifts over development. 

This research has primarily evaluated the analog+ and symbol+ models and found both wanting. 

We next introduce the analog-x model, which accounts for many of these challenging findings, 

and consider additional evidence for its proposals. We then selectively review classroom-based 

research, focusing on examples of symmetry-based instruction, which then feeds back to further 

inform our understanding of mental representations. 

 

14.2 Cognitive and Developmental Science Studies of Integer Understanding 

Our review of the literature begins with a consideration of some cognitive and 

developmental studies of how adults and children understand integers. Psychologists and 

neuroscientists utilize a set of standard laboratory paradigms for investigating the mental 

representation and processing of symbolic numbers, particularly with respect to how they relate 

to perceptual-motor primitives for comparing physical magnitudes. In this section, we selectively 
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review studies that have used some of these paradigms to reveal how people understand negative 

integers. Our focus is on findings that distinguish the analog+ and symbol+ models, and that 

motivate the analog-x model developed in the next section. 

14.2.1 Distance Effect  

The comparison paradigm dominates studies of numerical cognition. In this paradigm, 

people are presented with two numbers and make a judgment about which one is greater (or 

lesser) as quickly as possible while maintaining high accuracy. Response times are then used to 

make inferences about underlying mental representations and processes. Moyer and Landauer 

(1967) found that when adults compare pairs of one-digit natural numbers, the farther apart the 

numbers, the faster the judgment (e.g., 1 vs. 9 is judged faster than 1 vs. 3). From this distance 

effect, they inferred that people understand one-digit natural numbers using magnitude 

representations. More precisely, people possess a MNL for natural numbers, organized and 

oriented in space with smaller numbers “on the left” and larger numbers “on the right”.1 When 

comparing which of two numbers is greater, they map them to points on the MNL and 

discriminate which point is “to the right”. The farther apart the points, the easier the 

discrimination, and thus the faster the judgment. The distance effect has been extended to infants 

and children (Sekuler, & Mierkiewicz, 1977; Xu & Spelke, 2005), and to multi-digit natural 

numbers, rational numbers, and irrational numbers (Dehaene, Dupoux, & Mehler, 1990; Patel & 

Varma, in press; Schneider & Sigeler, 2010; Varma & Karl, 2013). 

Recently, psychological researchers have used the comparison paradigm to investigate 

the mental representation of integers. Two kinds of comparisons have received the bulk of 

attention. For negative comparisons, where both numbers are negative integers, adults and 

                                                
1 Cultural differences may influence the left-right orientation of the number line, based on 
whether numbers are read from left-to-right or right-to-left in one’s native language. However, 



Running head: COGNITIVE SCIENCE OF INTEGERS 

 

9 

children show a distance effect. For example, they compare -1 vs. -9 faster than they compare -1 

vs. -3 (Tzelgov, Ganor-Stern, & Maymon-Schreiber, 2009; Varma & Schwartz, 2011). This 

finding is consistent with analog+, which proposes that negative integers are represented as 

points on the extended MNL to the left of zero. The greater the distance between two points, the 

easier it is to discriminate which point is farther “to the right”, just as it is when comparing 

natural numbers; hence the distance effect. This finding is also consistent with symbol+, which 

proposes that comparisons of negative integers are first mapped to comparisons of positive 

integers (e.g., which is greater, -1 vs. -9? ! which is lesser, 1 vs. 9?); the positive integers are 

compared using the MNL for natural numbers (e.g., 1 < 9); and these judgments are mapped 

back to the negative integer domain (e.g., 1 < 9 ! -1 > -9). It is the middle step, where the 

mapped positive integers are compared using the MNL, that produces the distance effect. Thus, 

negative comparisons cannot differentiate analog+ and symbol+ because both models predict a 

distance effect. 

What can differentiate the two models are mixed comparisons, where one integer is 

negative and the other positive (e.g., -1 vs. 2 and -1 vs. 7). Analog+ proposes that the two 

integers are mapped to points on the extended MNL and discriminated, and therefore predicts a 

distance effect. By contrast, symbol+ proposes that the rule “positives are greater than negatives” 

is applied. Because this rule does not rely on magnitude representations, there should be no 

effect of distance.2 These conflicting predictions mean that, in principle, the data can be used to 

choose between the two models. However, in practice, this has proven difficult. One difficulty is 

that relatively few psychological studies have looked for distance effects (or a lack thereof) for 

                                                
2 In addition to mixed comparisons, zero comparisons can also differentiate the analog+ and 
symbol+ models. These are comparisons where one of the two numbers is zero (e.g., -2 vs. 0). 
See Varma and Schwartz (2011) for further discussion. 
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mixed comparisons. Another difficulty is that those that have done so have found inconsistent 

results. Nevertheless, some inferences are possible.  

No study has found a conventional distance effect for mixed comparisons, which would 

be consistent with analog+. Some studies have found no effect of distance, consistent with 

symbol+. For example, Tzelgov et al. (2009) found no effect of distance for mixed comparisons 

of the form -x vs. y, where the integers have different absolute values (e.g., -2 vs. 4); see also 

Ganor-Stern, Pinhas, Kallai, and Tzelgov (2010). Remarkably, other studies have found an 

inverse distance effect! Tzelgov et al. (2009) found an inverse distance effect for mixed 

comparisons of the form -x vs. x, where the integers have the same absolute value (e.g., -1 vs. 1 

is judged faster than -4 vs. 4). Varma and Schwartz (2011) also found an inverse distance effect 

for mixed comparisons of the form x vs. y (e.g., -1 vs. 2 is judged faster than -1 vs. 7); see also 

Krajcsi and Igács (2010). These mixed findings limit the strength of the inferences that can be 

drawn about the mental representation and processing of negative integers. With this caveat in 

mind, the remainder of this chapter assumes that the inverse distance effect is “real” (although 

we note several other inconsistencies in the literature below and give reasons for them in the 

Conclusion).  

14.2.2 SNARC Effect  

Further evidence for people’s mental representation of number comes from the Spatial-

Numerical Response Codes (SNARC) effect. This is the finding that smaller numbers are 

associated with the left side of space and larger numbers with the right side of space, reflecting 

their respective locations on the MNL as conventionally oriented. This effect was first 

documented in a study where adults judged the parity of one-digit natural numbers (Dehaene, 

Bossini, & Giraux, 1993). Adults were faster to judge the parity of small numbers (e.g., 2) when 
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the response (e.g., “even”) was made on the left versus right side of space, and faster to judge the 

parity of large numbers (e.g., 9) when the response (e.g., “odd”) was made on the right versus 

left side of space. The SNARC effect for one-digit natural numbers has been replicated many 

times (Gevers & Lammertyn, 2005). However, this effect extends inconsistently to other number 

classes such as multi-digit natural numbers and rational numbers (Bonato, Fabbri, Umiltà, & 

Zorzi, 2007; Toomarian & Hubbard, 2018; Varma & Karl, 2013). 

Analog+ and symbol+ agree in predicting that the SNARC effect extends to integers. 

However, they make different predictions regarding the form of this extension. Analog+ predicts 

a continuous SNARC effect, with negative integers responded to faster on the left versus right 

side of space and positive integers showing the opposite pattern. This is because it proposes that 

negative integers correspond to points “to the left” of zero on the MNL (and positive integers to 

points “to the right” of zero). By contrast, symbol+ predicts a piecewise SNARC effect, with 

negative integers showing an inverse SNARC effect (and positive integers a conventional 

SNARC effect). The inverse SNARC effect results because negative integers are mapped to 

positive integers before processing them (i.e., -x ! |-x| ! x). Thus, large negative integers are 

processed as small positive integers (e.g., -1 ! 1) and small negative integers as large positive 

integers (e.g., -9 ! 9), yielding an inverted SNARC effect. 

That analog+ and symbol+ predict different SNARC effects means that, in principle, the 

data can be used to choose between them. Unfortunately, the literature is full of mixed results. 

Some studies have found the continuous SNARC effect predicted by analog+ (Fischer, 2003) 

whereas others have found the piecewise SNARC effect predicted by symbol+ (Fischer & 

Rottman, 2005). Shaki and Petrusic (2005) showed that these different findings are due in part to 

differences in methodology. They had adults make positive comparisons (e.g., 1 vs. 2) and 
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negative comparisons (e.g., -1 vs. -2), holding the distance between each pair of numbers 

constant. When positive comparisons and negative comparisons were intermixed in the same 

block of trials, participants showed a continuous SNARC effect consistent with analog+. 

However, when these different comparison types were segregated in different blocks, 

participants showed the piecewise SNARC effect predicted by symbol+. This study suggests that 

adults possess multiple integer representations and choose among them based on task demands. 

We return to this flexibility in the Conclusion. 

14.2.3 Number Line Estimation Task 

The number line estimation (NLE) paradigm has also been used to investigate the mental 

representation of integers. In this paradigm, participants are presented with a number and a 

number line with only the endpoints labeled, and have to mark the position of the number on the 

number line with a pencil or computer pointer. This task was originally used with children and 

with natural numbers in the ranges 1-100 to 1-1000. Not surprisingly, the error in children’s 

estimates decreases over development. The more interesting finding was that the pattern of errors 

also changes over development. The pattern for older children is veridical, with linearly spaced 

numbers. By contrast, the pattern for younger children is logarithmic, with exaggerated spaces 

between smaller numbers and compressed spaces between larger numbers (Siegler & Opfer, 

2003). These developmental trends have been extended to rational numbers, whether expressed 

as fractions or decimal proportions. In both cases, children as young as 10 years old already 

make linear estimates, with error decreasing with further development into adulthood (Iuculano 

& Butterworth, 2011; Siegler, Thompson, & Schneider, 2011). Finally, for irrational numbers, 

adults make linear and accurate estimates of radical expressions such as 2 and 90 (Patel & 

Varma, in press). 
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Analog+ and symbol+ do not make strong predictions about performing the NLE task on 

integers, and how this performance changes over development. For this reason, we simply 

present some of the core findings. First, there appears to be a logarithmic-to-linear shift with 

development in the estimation of negative integers, one that parallels that for natural numbers. 

Brez, Miller, and Ramirez (2015) found evidence that second graders rely on logarithmically 

scaled representations when estimating numbers in the range -1000 – 0, just as they do when 

estimating numbers in the range 0 – 1000. This representation shifts over elementary school, and 

by fourth (and especially sixth) grade, children exhibit linear representations for both ranges. By 

middle school, children’s estimates are linear in the much larger range -10000 – 0 and also in the 

combined range -1000 – 1000 (Young & Booth, 2015). 

14.2.4 Neuroimaging Studies 

Additional insight into the mental representation and processing of integers can be gained 

from neuroscience studies. We focus here on functional Magnetic Resonance Imaging (fMRI) 

studies that have utilized the comparison paradigm, as these are of greatest relevance to 

competitively evaluating the analog+ and symbol+ models. 

Chassy and Grodd (2012) identified areas that show greater activation when adults make 

negative comparisons (e.g.. -3 vs. -2) versus positive comparisons (e.g., 5 vs. 4). One such area 

was the superior parietal lobule (SPL). This area is adjacent to the intraparietal sulcus (IPS), 

which prior studies have identified as a neural correlate of the MNL for natural numbers. 

Specifically, the IPS shows a neural distance effect when comparing natural numbers, with 

greater activation for harder near-distance comparisons (e.g., 1 vs. 2) than for easier far-distance 

comparisons (e.g., 1 vs. 9) (Pinel et al., 2001). The researchers interpreted activation of the SPL 
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similarly, as evidence that negative integers also have magnitude representations.3 This 

interpretation is consistent with the extended MNL representation proposed by analog+ but not 

with the mapping rules of symbol+. 

Stronger evidence would be provided by an experiment that looked for distance effects 

and that included mixed comparisons. Blair, Rosenberg-Lee, Tsang, Schwartz, and Menon, 

(2012) provided such evidence in an fMRI study of adults who made positive, negative, and 

mixed comparisons of pairs of integers in which the distance varied systematically. Their results 

concerning positive vs. negative comparisons largely replicated those of Chassy and Grodd 

(2011). A finding of interest involved a representational similarity analysis. In this kind of 

analysis, the neural response patterns elicited by different stimuli are compared. The idea is that 

the more dissimilar the patterns for two stimuli, the more distinct the representations. The 

researchers focused on the IPS and the neural patterns elicited when people make near- vs. far-

distance comparisons. They found that near- vs. far-distance comparisons elicited more distinct 

neural patterns for positive integers than for negative integers. This implies that positive integers 

may have a “sharper tuning” in IPS than negative integers. This finding is consistent with 

analog+, suggesting that negative integer magnitudes are less well-differentiated than positive 

integer magnitudes. With regard to mixed comparisons, this study did not find a behavioral effect 

of distance, but the neuroimaging data told a more complex story. No areas were more active for 

mixed comparisons than for negative comparisons or positive comparisons. This null result is 

                                                
3 SPL and IPS are also associated with visuospatial reasoning (e.g., Zacks, 2008). Thus, it is 
possible that they are recruited here not to process the magnitudes of positive integers and 
negative integers, but rather to process their symmetric relationship about zero. We consider the 
role of symmetry processing in integer understanding below, when describing the analog-x 
model. 
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inconsistent with symbol+, which predicts recruitment of areas in prefrontal cortex associated 

with rule application (i.e., “positives are greater than negatives”).  

Gullick, Wolford, and Temple (2012) conducted a study similar to Blair et al. (2012). The 

results were comparable overall, but one finding is worth highlighting. There was an inverse 

distance effect for mixed comparisons of the form –x vs. y where both –x < y and |x| < |y| (e.g., -3 

vs. 5). This was true behaviorally, with far-distance comparisons slower than near-distance 

comparisons, and this was also true neurally, with far-distance comparisons eliciting greater 

activation in IPS and SPL than near-distance comparisons. These inverse behavioral and neural 

distance effects are inconsistent with both analog+, which predicts conventional distance effects, 

and with symbol+, which predicts no effects of distance. 

To summarize, these neuroimaging studies of adults provide limited insight into the 

representation and processing of negative integers. Negative comparisons elicit greater activation 

than positive comparisons in IPS and SPL, areas associated with the MNL and visuospatial 

processing (Blair et al., 2012; Chassy & Grodd, 2012; Gullick et al., 2012). In addition, negative 

comparisons do not elicit greater activation than positive comparisons in prefrontal areas 

associated with rule processing (Gullick et al., 2012). These findings can be interpreted as 

evidence for analog+ and against symbol+, respectively. However, neither of these models can 

explain the inverse distance effect that Gullick et al. (2012) found for (a subset of) mixed 

comparisons, both behaviorally and in the activations of IPS and SPL. 

By contrast, the findings are clearer from the lone neuroimaging study that has 

investigated how children understand negative integers. Gullick and Wolford (2013) had 5th and 

7th graders make negative comparisons and positive comparisons. The important finding was that 

for the 5th graders, negative comparisons elicited greater activation than positive comparisons in 
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prefrontal areas associated with rule processing. For 7th graders, however, there was no such 

difference. This suggests that younger children reason according to symbol+. This also suggests 

that older children might have shifted to a new model of integer understanding, whether because 

of development, experience, or instruction. We consider a candidate model next.  

 

14.3 Analog-x 

The psychological and neuroscience literatures on integer understanding are small and in 

some cases inconsistent. Nevertheless, they support tentative inferences about the nature of the 

underlying mental representations and processes.  

We begin with mixed comparisons, where people judge whether a positive integer or 

negative integer is greater, because this case provides the most leverage for choosing between 

possible models. Analog+ proposes that integers are understood with respect to an extended 

MNL, where negative integers are located “to the left” of zero. It predicts a standard distance 

effect for mixed comparisons, with far-distance pairs (e.g., -1 vs. 7) judged faster than near-

distance pairs (e.g., -1 vs. 2). Because no study in the literature has found support for this 

prediction, analog+ can be ruled out. Symbol+ proposes that negative integers are not understood 

directly, by reference to magnitude representations, but rather indirectly, by applying rules. In 

particular, mixed comparisons are made by applying the rule “positive integers are greater than 

negative integers.” Because this rule makes no reference to the magnitudes of the integers, 

symbol+ predicts no effect of distance. Varma and Schwartz (2011) found support for this 

prediction among 6th graders who had just learned about negative numbers. This makes sense if 

conventional instruction builds new procedures for working with integers on top of known 

procedures for working with natural numbers, which students have already mastered. Some 
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studies of adults have also found support for this prediction (Ganor-Stern et al., 2010; Tzelgov et 

al., 2009). 

However, our assessment is that adults likely reason according to a different model. This 

follows from numerous other studies of adults that have instead found an inverse distance effect 

for mixed comparisons (Gullick et al., 2012 for comparisons of the form –x vs. y where both –x < 

y and |x| < |y|; Krajcsi & Igács, 2010; Varma & Schwartz, 2011; Tzelgov et al., 2009, for mixed 

comparisons of the form -x vs. x). In these studies, adults are faster to judge near-distance pairs 

(e.g., -1 vs. 2) than far-distance pairs (e.g., -1 vs. 7). The inverse distance effect is inconsistent 

with the predictions of the analog+ and symbol+ models, and raises the question of how adults 

understand the integers? We address it here by describing a third model and reviewing evidence 

for its key proposal, that adults understand integers by combing magnitude representations with 

symmetry processing.  

14.3.1 Integer Understanding = Magnitude Representations + Symmetry Processing 

The natural numbers coupled with the addition operation form a system that obeys the 

commutative law x + y = y + x, the associative law (x + y) + z = x + (y + z), and the identity law x 

+ 0 = x, with 0 the additive identity. Critically, the integers bring additional structure: they also 

obey the inverse law, which states that for every x, there is a corresponding -x such that their sum 

is the identity x + -x = 0. 

Extending one’s understanding of number from the natural numbers to the integers 

requires understanding the additional structure brought by the inverse law. Initially, this 

understanding is explicit. When children first learn about the integers, they apply the governing 

laws in a deliberate and controlled manner to work with integers in arithmetic expressions and 

algebraic equations. This is one sense in which they reason according to symbol+. With 
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development and experience, however, children’s integer understanding shifts. They come to an 

implicit understanding of the integers, such that they no longer recruit rule-based processing as 

heavily. Rather, they gain an intuitive understanding of how integers can and cannot be 

manipulated in arithmetic and algebraic contexts. This raises the question of what it means to 

have an intuitive understanding of the integers, in particular to understand that additive inverse 

law that enriches them beyond the natural numbers. 

Analog-x provides an answer to this question. It proposes that adults understand negative 

integers as they understand natural numbers, with reference to magnitude representations. That 

is, there is an MNL for integers. Critically, it is not the MNL proposed by analog+: it does not 

extend the MNL for natural numbers “to the left”. Rather, it reflects the MNL for natural 

numbers to directly represent the inverse relationship between the pairs -x and x. In this way, 

analog-x combines the mind’s capacity for representing magnitudes with its capacity for 

processing symmetry. 

Figure 14.2 depicts the combination of magnitude and symmetry mechanisms proposed 

by analog-x. At the center is a reference axis that helps locate the natural number MNL and the 

negative integer MNL. The natural number MNL is shown above the reference axis. Its nonlinear 

form captures the psychophysical scaling of magnitude representations. The magnitude of a 

natural number is given by the height of the corresponding point above the reference axis. 

Natural numbers are compared in the usual way, by discriminating their magnitudes (i.e., 

heights). As the examples in Figure 14.2 show, the model predicts a distance effect for positive 

comparisons (i.e., 1 vs. 8 is more discriminable than 1 vs. 3). 
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Figure 14.2 The analog-x model. The reference axis at the center helps locate the natural number 

MNL (above) and the negative integer MNL (below), which are reflections of each other. It 

predicts conventional distance effects for positive comparisons and for negative comparisons, as 

shown by the projections on the right. Critically, it predicts and inverse distance effect for mixed 

comparisons across the two MNLs, as shown by the projection on the left. 

 

A new proposal is that the MNL for negative integers is a reflection of the MNL for 

natural numbers about the reference axis. This reflective organization has two important 

consequences. First, it directly models the inverse relationship between –x and x, in the vertical 

alignment of the corresponding points. In this way analog-x captures people’s intuitive 

understanding of the additional structure that the integers bring over the natural numbers. 

Negative integers are compared in the same was as natural numbers, by discriminating the 

corresponding magnitudes (i.e., heights). The model predicts a distance effect for negative 

comparisons, as the examples in Figure 14.2 show (i.e., -1 vs. -8 is more discriminable than -1 

vs. -3). 
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The second consequence of the reflective relationship between the natural number and 

negative integer MNLs concerns mixed comparisons. Specifically, this reflective relationship 

predicts the inverse distance effect observed by some researchers (Gullick et al., 2012 for 

comparisons of the form –x vs. y where both –x < y and |x| < |y|; Krajcsi & Igács, 2010; Varma & 

Schwartz, 2011; Tzelgov et al., 2009, for mixed comparisons of the form -x vs. x). Positive and 

negative integers that are close together on the standard number line (e.g., -2 vs. 1), and thus hard 

to discriminate, correspond to magnitudes (i.e., heights) that are quite different in the analog-x 

representation, and thus easy to discriminate. The reverse is true for positive and negative 

integers that are far apart on the standard number line (e.g., -2 vs. 6): the corresponding heights 

in the analog-x representation are quite similar, and thus difficult to discriminate.4 

14.3.2 Studies of Symmetry and Integer Processing 

A novel proposal of analog-x is that the integer MNL encodes the additive inverse law 

using symmetry processing. Tsang and Schwartz (2009) tested this proposal in a behavioral 

study of adults. They developed an integer bisection paradigm where participants are presented 

with pairs of integers and have to name the midpoints as quickly as possible. They predicted that 

performance would be best for two cases where the symmetry of integers about 0 could be 

exploited. The first is for symmetric pairs of the form (-x, x), where the midpoint is 0. Computing 

the midpoint should be particularly easy because in analog-x, the corresponding points are 

vertically aligned to capture the additive inverse relationship between x and -x. The second case 

is for pairs of the form (-x, 0) and (0, x), where 0 – the point of symmetry – can be used to anchor 

midpoint estimation. They further predicted that symmetric processing would confer some 

advantage for pairs close to these two cases, e.g., (-6, 8) because it is almost symmetric, and (-1, 

                                                
4 The analog-x model shown in Figure 14.2 can be formalized and quantitatively fit to the data. 
See Varma and Schwartz (2011) for the details. 
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13) because it is almost anchored. Their results supported these predictions. Response times were 

fastest for bisections that were symmetric, anchored, or nearly so; see Figure 14.3a. 

 

 

Figure 14.3 Integer bisection paradigm. (a) Bisection of integer pairs is privileged when the 

numbers are either more symmetric around 0 or more anchored to 0. (b) The greater the 

numerical symmetry of the pair, the greater the activation in left lateral occipital cortex, an area 

associated with processing of visual symmetry. 

 

14.4 Instructional Studies and the Symmetry of Positive and Negative Integers 

Analog-x is a model of how adults understand the integers. Its key proposal is that 

symmetry processing is recruited to represent that additive inverse law, resulting in a 

(a) Behavioral results 

(b) fMRI results 
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transformed MNL as shown in Figure 14.2. It is this symmetry that allows analog-x to predict the 

inverse distance effect for mixed comparisons and privileged performance on the integer 

bisection task for symmetrical and anchored pairs. In contrast, symbol+ provides a better 

characterization of children’s understanding of integers. Behaviorally, children show no effect of 

distance (Varma & Schwartz, 2011), and neurally, they show increased recruitment of prefrontal 

areas associated with deliberate rule processing (Gullick & Wolford, 2013). This raises the 

question of the factors that drive the progression in how integers are understood, from applying 

symbolic rules to referencing a transformed MNL? 

One hypothesized factor is learning algebra. This requires practicing applying the 

additive inverse law in its colloquial form: The same quantity can be added or subtracted from 

both sides of an equation. This practice could transform children’s understanding of integers, 

restructuring their MNL to directly incorporate the symmetry between pairs of additive inverses 

x and –x; see Figure 14.1. Evidence for this developmental claim could come from a longitudinal 

study tracking changes in the integer representation over schooling. Unfortunately, no such study 

has been run to date. 

Another perspective on how the integer representation changes over developments comes 

from instructional studies of how best to teach the integers to children. Some of these 

interventions have emphasized the use of standard number lines, and can be understood as 

consistent with analog+ (Hativa & Cohen, 1995; Moreno & Mayer, 1999; Schwarz, Kohn, & 

Resnick, 1993; Thompson & Dreyfus, 1988). Others have focused on teaching rules for 

manipulating negative numbers (e.g., the SR condition of Moreno and Mayer, 1999), consistent 

with the symbol+ model. Still others have focused directly on the additive inverse principle, 

using different colored chips or other discrete entities to represent positive and negative 
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quantities, which cancel each other out (Bolyard, 2006; Liebeck, 1990; Linchevski & Williams, 

1999; Streefland, 1996). A potential downside of these discrete cancellation-based approaches is 

that they do not emphasize order, and thus are isolated from linear magnitude representations of 

number (Bofferding, 2014).  

Three recent studies have moved beyond instructional approaches aligned with analog+ 

and symbol+ or focused on the additive inverse principle in isolation. These studies have 

developed new approaches to instruction that focus on the symmetry of the positive and negative 

integers about zero, and as a result they are better aligned with analog-x. 

14.4.1 Instructional Approaches Incorporating Symmetry 

Two recent studies that have started from a conceptual analysis of the elements necessary 

to understand integers have derived instructional approaches that incorporate a focus on 

symmetry. Saxe, Earnest, Sitabkhan, Haldar, Lewis, and Zheng (2010) designed one part of their 

instruction around the task of marking the position of an integer on a standard number line, 

where other numbers might already be marked. They identified five principles necessary for 

successful performance. The fifth principle was understanding symmetry and absolute value: 

“For every positive number, there is a negative number that is the same distance from 0.” (p. 

440) Their instructional materials included problems that required reasoning about this 

symmetry, such as locating -150 on a number line where 0 and 150 were already marked. Their 

learning assessments included items measuring understanding of this symmetry, such as judging 

as correct or incorrect a number line where -1000 and 1000 were marked but were not 

equidistant from 0 (which was also marked), and providing a justification for why. 
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Bofferding (2014) developed and evaluated new instructional approaches for teaching the 

integers to first graders.5 These approaches derived in part from a conceptual analysis of what it 

means to understand the integers, which revealed three meanings of the “-” sign. The first and 

second meanings are familiar: as a mark distinguishing negative integers from positive integers 

(e.g., -7 vs. 7) and as the name of the subtraction function (e.g., 9 – 3). The third meaning had 

been previously overlooked in the education literature: as the name of the “symmetric function” 

for “taking the opposite” (e.g., -(7) = -7). This study also revealed the roles symmetry plays in 

the mental models children have for the integers. Only the most sophisticated of these models 

represents that positive integers and negative integers are symmetric about zero. In addition, only 

these models correctly distinguish the values versus magnitudes of negative integers (e.g., 8 < 9 

but -8 > -9), which is critical for making “more” versus “less” (and “high” versus “low”) 

judgments of negative integers. 

In these studies, symmetry is thoughtfully incorporated into the instruction and models of 

student learning. An important limitation is that the value of symmetry for learning is not tested 

directly.  

14.4.2 An Instructional Study Directly Comparing Symmetry to other Approaches  

We see convergence in the psychological, neuroscience, and mathematics education 

literatures that symmetry plays a critical role in what it means to understand the integers. A study 

that builds on this convergence is Tsang, Blair, Bofferding, and Schwartz (2015), which directly 

compared an instructional approach that incorporated symmetry to more traditional number line 

and cancellation approaches. The instructional approaches were built around three manipulatives 

embodying different underlying models. The “jumping” approach modeled arithmetic operations 

                                                
5 This study is notable in testing children much younger than those in prior psychological and 
educational studies. 
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as movements along an extended number line (Figure 14.4a); it corresponds to analog+. The 

“stacking” approach modeled arithmetic operations on the cancellation of discrete items (Figure 

14.4b). The “folding” approach combined elements of jumping (i.e., directed magnitudes) and 

stacking (i.e., cancellation) (Figure 14.4c). What is novel about this approach is that adding or 

subtracting integers requires bringing the two operands into alignment using symmetric 

processing.  

Post-test measures found substantial evidence for the efficacy of the folding approach, 

and thus for the use of symmetry. When estimating the position of a negative integer on a 

number line where the corresponding positive integer was already marked, the folding group was 

most likely to use a symmetry strategy, which was associated with more accurate performance. 

More importantly, the folding group performed best on far-transfer problems such as estimating 

the position of negative fractions on number lines and solving missing operand problems (e.g., 1 

+ –4 = [ ] + –2), which had been not covered in class. These far-transfer findings are evidence for 

the analog-x proposal that symmetry is particularly important when students learn pre-algebra 

and must apply the additive inverse law to manipulate equations. 

The results of Tsang et al. (2015) suggest that including symmetry in integer instruction 

allows learners to generalize to solve new types of negative number problems that they had not 

directly been taught, including those that focus on the additive inverse property. These findings 

bring useful questions back to the study of mental representations of number. For example, there 

are relatively few neuroimaging studies of integer processing in general, and even fewer where 

the participants are children. How do different instructional approaches affect children’s neural 

representations of integers as they become more fluent? Does an instructional approach that 
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focuses on symmetry and the additive inverse property increase the recruitment of brain areas 

associated with visual symmetry, even when learners are reasoning about symbolic numbers?  

 

 

Figure 14.4 Actions taken by students when evaluating the equation 3 + –2 = 1 – in the (a) 

jumping, (b) stacking, and (c) folding instructional conditions. These correspond to the analog+, 

symbol+, and analog-x, respectively. (Note. From “Learning to ‘see’ less than nothing: Putting 

perceptual skills to work for learning numerical structure,” by J. M. Tsang, K. P. Blair, L. 

Bofferding, and D. L. Schwartz, 2015, Cognition and Instruction, 33, p. 167. Copyright 2015 by 

Taylor & Francis. https://www.tandfonline.com/toc/hcgi20/current Reprinted with permission.) 
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14.5 Conclusion 

This chapter has considered how adults understand an abstract mathematical concept, the 

integers, and how educators can foster this understanding in children. It has built a corridor of 

explanation from neuroimaging data to response times to hands-on activities in the classroom. 

The result is a clearer picture of how magnitude representations and symmetry processing 

support integer understanding, and how these capacities are coordinated and integrated through 

learning.  

Our first proposal is that acquiring a new, abstract mathematical concept requires 

mastering the governing symbol system. More novel is our second proposal: mastery enriches 

the mental representation of known concepts to reflect the unique properties of the new concept, 

and it does so by recruiting additional perceptuo-motor capacities. In this way, people can build 

intuition for ideas quite far from perceptual-motor experience (Blair et al., 2014; Schwartz et al., 

2012). Specifically, analog-x makes the surprising claim that the MNL for natural numbers is 

transformed through symmetry processing to directly encode that –x and x are additive inverses. 

We speculate that this transformation is accelerated when students learn algebra, and practice 

applying the additive inverse law in its colloquial form (“the same quantity can be added to or 

subtracted from both sides of the equal sign”) to manipulate equations. It is an open question 

whether this transformation can be accelerated further, for example by developing instructional 

activities where younger children coordinate magnitude representations and symmetry 

processing of integers. The folding condition of Tsang et al. (2015) offers initial evidence that 

this might be possible. 

Our review began with neuroscience and psychological studies and progressed towards 

educational studies. We end by considering a path less often trodden: how education can inform 
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psychology and neuroscience. Educational research can guide future lab studies of how analog-x 

(and analog+ and symbol+) scale to arithmetic and algebraic contexts. For example, there are 

few psychological studies of how people understand arithmetic operations on integers (e.g., 

Prather & Alibali, 2008), and the neural correlates of this understanding (e.g., Gullick & 

Wolford, 2014). By contrast, there is an extensive mathematics education literature on different 

approaches for teaching integer arithmetic (Hativa & Cohen, 1995; Liebeck, 1990; Linchevski & 

Williams, 1999; Moreno & Mayer, 1999; Saxe et al., 2010; Schwarz et al., 1993; Streefland, 

1996; Thompson & Dreyfus, 1988). This asymmetry represents an opportunity for psychological 

and neuroscience research, as many of the phenomena that have been documented in the 

classroom merit further study in the lab. One example is Bofferding’s (2014) proposal that to 

understand the integers is to understand three meanings of the “-” sign, including its easily 

overlooked meaning as a “symmetric function” for reversing the sign of an integer expression. 

Another example is the Tsang et al. (2015) finding that understanding the symmetric 

organization of positive integers and negative integers about zero is associated with better 

performance on pre-algebra problems demanding sensitivity to the meaning of the “=” sign (i.e., 

missing operand problems). What mental and neural mechanisms undergird understanding the “-

“ sign as a “symmetric function” and pre-algebraic reasoning about integers? 

In addition, mathematics education research can potentially reframe how we understand 

the inconsistent results of some of the psychological studies reviewed above. This was true for 

the distance effect and the SNARC effect, with different studies finding evidence consistent with 

the three different models of integer understanding (i.e., analog+, symbol+, and analog-x). These 

inconsistencies are deeply problematic for psychologists and neuroscientists because they make 

it impossible to choose between competing models, and ultimately to make scientific progress. 
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The conventional explanation for mixed findings is noise in the signal: the samples are too small, 

the methods are too varied, and so on. Mathematics education research offers a different 

perspective on this heterogeneity. The participants in these studies learned about the integers in 

classrooms spread across the United States and indeed the world. We have seen that different 

instructional approaches are aligned with the three different models of integer understanding. 

Thus, it is possible that some of the inconsistencies observed in psychological studies are not the 

product of noise in the data or even individual differences in basic cognitive abilities. Rather, 

they may be the product of instructional differences. Understanding this systematic variation is a 

goal for future research. 

  



Running head: COGNITIVE SCIENCE OF INTEGERS 

 

30 

References 

Blair, K.P., Rosenberg-Lee, M., Tsang, J., Schwartz, D.L., Menon, V. (2012). Beyond natural 

numbers: representation of negative numbers in the intraparietal sulcus. Frontiers in 

Human Neuroscience, 6, e7. https://doi.org/10.3389/fnhum.2012.00007 

Blair, K.P., Tsang, J.M., Schwartz, D.L. (2014). The bundling hypothesis: how perception and 

culture give rise to abstract mathematical concepts. In S. Vosniadou (Ed.), International 

handbook of research on conceptual change II (pp. 322–340). New York: Taylor & 

Francis. 

Bofferding, L. (2014). Negative integer understanding: characterizing first graders’ mental 

models. Journal for Research in Mathematics Education, 45, 194–245. 

https://doi.org/10.5951/jresematheduc.45.2.0194  

Bolyard, J. J. (2006). A comparison of the impact of two virtual manipulatives on student 

achievement and conceptual understanding of integer addition and subtraction (Order 

No. 3194534). Available from ProQuest Dissertations & Theses Global. (304915783).  

Bonato, M., Fabbri, S., Umiltà, C., Zorzi, M. (2007). The mental representation of numerical 

fractions: real or integer? Journal of Experimental Psychology: Human Perception and 

Performance, 33, 1410–1419. https://doi.org/10.1037/0096-1523.33.6.1410 

Brez, C.C., Miller, A.D., Ramirez, E.M. (2015). Numerical estimation in children for both 

positive and negative numbers. Journal of Cognition and Development, 17, 341–358. 

https://doi.org/10.1080/15248372.2015.1033525 

Chassy, P., & Grodd, W. (2012). Comparison of quantities: core and format-dependent regions 

as revealed by fMRI. Cerebral Cortex, 22, 1420–1430. 

https://doi.org/10.1093/cercor/bhr219 



Running head: COGNITIVE SCIENCE OF INTEGERS 

 

31 

Dehaene, S., Bossini, S., Giraux, P. (1993). The mental representation of parity and number 

magnitude. Journal of Experimental Psychology: General, 122, 371–396. 

https://doi.org/10.1037/0096-3445.122.3.371 

Dehaene, S., Dupoux, E., Mehler, J. (1990). Is numerical comparison digital? Analogical and 

symbolic effects in two-digit number comparison. Journal of Experimental Psychology: 

Human Perception and Performance, 16, 626–641. https://doi.org/10.1037/0096-

1523.16.3.626 

Fischer, M.H. (2003). Cognitive representation of negative numbers. Psychological Science, 14, 

278–282. https://doi.org/10.1111/1467-9280.03435 

Fischer, M.H., & Rottman, J. (2005). Do negative numbers have a place on the mental number 

line? Psychology Science, 47, 22–32. 

Gallardo, A. (2002). The extension of the natural number domain to the integers in the transition 

from arithmetic to algebra. Educational Studies in Mathematics, 49, 171–192. 

https://doi.org/10.1023/A:1016210906658 

Ganor-Stern, D., Pinhas, M., Kallai, A., Tzelgov, J. (2010). Holistic representation of negative 

numbers is formed when needed for the task. Quarterly Journal of Experimental 

Psychology, 63, 1969–1981. https://doi.org/10.1080/17470211003721667 

Gevers, W., & Lammertyn, J. (2005). The hunt for SNARC. Psychology Science, 47, 10–21. 

Gullick, M.M., Wolford, G., Temple, E. (2012). Understanding less than nothing: neural distance 

effects for negative numbers. NeuroImage, 62, 542–554. 

https://doi.org/10.1016/j.neuroimage.2012.04.058 

Gullick, M.M., & Wolford, G. (2013). Understanding less than nothing: children’s neural 

response to negative numbers shifts across age and accuracy. Frontiers in Psychology, 4, 



Running head: COGNITIVE SCIENCE OF INTEGERS 

 

32 

e584. https://doi.org/10.3389/fpsyg.2013.00584 

Gullick, M.M., & Wolford, G. (2014). Brain systems involved in arithmetic with positive versus 

negative numbers. Human Brain Mapping, 35, 539–551. 

https://doi.org/10.1002/hbm.22201 

Hativa, N., & Cohen, D. (1995). Self learning of negative number concepts by lower division 

elementary students through solving computer-provided numerical problems. 

Educational Studies in Mathematics, 28, 401–431. https://doi.org/10.1007/BF01274081 

Hefendehl-Hebeker, L. (1991). Negative numbers: obstacles in their evolution to intellectual 

constructs. For the Learning of Mathematics, 11, 26–32. 

Iuculano, T., & Butterworth, B. (2011). Understanding the real value of fractions and decimals. 

The Quarterly Journal of Experimental Psychology, 64, 2088–2098. 

https://doi.org/10.1080/17470218.2011.604785 

Krajcsi, A., & Igács, J. (2010). Processing negative numbers by transforming negatives to 

positive range and by sign shortcut. European Journal of Cognitive Psychology, 22, 

1021–1038. https://doi.org/10.1080/09541440903211113 

Liebeck, P. (1990). Scores and forfeits, and intuitive model for integers. Educational Studies in 

Mathematics, 21, 221–239. https://doi.org/10.1007/BF00305091 

Linchevski, L., &Williams, J. (1999). Using intuition from everyday life in ‘filling’ the gap in 

children’s extension of their number concept to include the negative numbers. 

Educational Studies in Mathematics, 39, 131–147. 

https://doi.org/10.1023/A:1003726317920 



Running head: COGNITIVE SCIENCE OF INTEGERS 

 

33 

Martin, T., & Schwartz, D.L. (2005). Physically distributed learning: adapting and reinterpreting 

physical environments in the development of fraction concepts. Cognitive Science, 29, 

587–625. https://doi.org/10.1207/s15516709cog0000_15  

Moreno, R., & Mayer, R.E. (1999). Multimedia-supported metaphors for meaning making in 

mathematics. Cognition and Instruction, 17, 215–248. 

https://doi.org/10.1207/S1532690XCI1703_1 

Moyer, R.S., & Landauer, T.K. (1967). Time required for judgements of numerical inequality. 

Nature, 215, 1519–1520. https://doi.org/10.1038/2151519a0 

Patel, P.J., & Varma, S. (in press). How the abstract becomes concrete: irrational numbers are 

understood relative to natural numbers and perfect squares. Cognitive Science. 

Pinel, P., Dehaene, S., Rivière, D., Le Bihan, D. (2001). Modulation of parietal activation by 

semantic distance in a number comparison task. NeuroImage, 14, 1013–1026. 

https://doi.org/10.1006/nimg.2001.0913 

Prather, R.W., & Alibali, M.W. (2008). Understanding and using principles of arithmetic: 

operations involving negative numbers. Cognitive Science, 32, 445–457. 

https://doi.org/10.1080/03640210701864147 

Rittle-Johnson, B., Schneider, M., Star, J.R. (2015). Not a one-way street: bidirectional relations 

between procedural and conceptual knowledge of mathematics. Educational Psychology 

Review, 27, 587–597. https://doi.org/10.1007/s10648-015-9302-x 

Rohrer, D., & Taylor, K. (2007). The shuffling of mathematics problems improves 

learning. Instructional Science, 35, 481–498. https://doi.org/10.1007/s11251-007-9015-8 



Running head: COGNITIVE SCIENCE OF INTEGERS 

 

34 

Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., Tootell, R. (2005). Symmetry activates 

extrastriate visual cortex in human and nonhuman primates. Proceedings of the National 

Academy of Sciences USA, 102, 3159–3163. https://doi.org/10.1073/pnas.0500319102 

Saxe, G.B., Earnest, D., Sitabkhan, Y., Haldar, L.C., Lewis, K.E., Zheng, Y. (2010). Supporting 

generative thinking about the integer number line in elementary mathematics. Cognition 

and Instruction, 28, 433–474. https://doi.org/10.1080/07370008.2010.511569 

Schwartz, D.L., Blair, K.P., Tsang, J. (2012). How to build educational neuroscience: two 

approaches with concrete instances. British Journal of Educational Psychology 

Monograph Series, 8, 9–27. 

Schwarz, B.B., Kohn, A.S., Resnick, L.B. (1993). Positives about negatives: a case study of an 

intermediate model for signed numbers. Journal of the Learning Sciences, 3, 37–92. 

https://doi.org/10.1207/s15327809jls0301_2 

Schneider, M., & Siegler, R.S. (2010). Representations of the magnitudes of fractions. Journal of 

Experimental Psychology: Human Perception and Performance, 36, 1227–1238. 

https://doi.org/10.1037/a0018170 

Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child 

Development, 48, 630–633. https://doi.org/10.2307/1128664 

Shaki, S., & Petrusic, W.M. (2005). On the mental representation of negative numbers: context-

dependent SNARC effects with comparative judgments. Psychonomic Bulletin & Review, 

12, 931–937. https://doi.org/10.3758/BF03196788 

Siegler, R.S., & Opfer, J. (2003). The development of numerical estimation: evidence for 

multiple representations of numerical quantity. Psychological Science, 14, 237–243. 

https://doi.org/10.1111/1467-9280.02438 



Running head: COGNITIVE SCIENCE OF INTEGERS 

 

35 

Siegler, R.S., Thompson, C.A., Schneider, M. (2011). An integrated theory of whole number and 

fractions development. Cognitive Psychology, 62, 273–296. 

https://doi.org/10.1016/j.cogpsych.2011.03.001 

Streefland, L. (1996). Negative numbers: reflections of a learning researcher. Journal of 

Mathematical Behavior, 15, 57–77. https://doi.org/10.1016/S0732-3123(96)90040-1 

Thompson, P.W., & Dreyfus, T. (1988). Integers as transformations. Journal for Research in 

Mathematics Education, 19, 115–133. https://doi.org/10.2307/749406 

Toomarian, E.Y., & Hubbard, E.M. (2018). The fractions SNARC revisited: processing fractions 

on a consistent mental number line. Quarterly Journal of Experimental Psychology. 

http://journals.sagepub.com/doi/10.1080/17470218.2017.1350867 

Tsang, J.M., Rosenberg-Lee, M., Blair, K.P., Schwartz, D.L., Menon, V. (2010, June). Near 

symmetry in a number bisection task yields faster responses and greater occipital activity. 

Poster presented at the 16th annual meeting of the Organization for Human Brain 

Mapping, Barcelona, Spain. 

Tsang, J.M., Blair, K.P., Bofferding, L., Schwartz, D.L. (2015). Learning to “see” less than 

nothing: putting perceptual skills to work for learning numerical structure. Cognition and 

Instruction, 33, 154–197. https://doi.org/10.1080/07370008.2015.1038539 

Tsang, J.M., & Schwartz, D.L. (2009). Symmetry in the semantic representation of integers. In 

N. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st annual conference of the 

cognitive science society (pp. 323–328). Austin, TX: Cognitive Science Society. 

Tzelgov, J., Ganor-Stern, D., Maymon-Schreiber, K. (2009). The representation of negative 

numbers: exploring the effects of mode of processing and notation. The Quarterly 



Running head: COGNITIVE SCIENCE OF INTEGERS 

 

36 

Journal of Experimental Psychology, 62, 605–624. 

https://doi.org/10.1080/17470210802034751 

Varma, S., & Karl, S.R. (2013). Understanding decimal proportions: discrete representations, 

parallel access, and privileged processing of zero. Cognitive Psychology, 66, 283–301. 

https://doi.org/10.1016/j.cogpsych.2013.01.002 

Varma, S., & Schwartz, D.L. (2011). The mental representation of integers: an abstract-to-

concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385. 

https://doi.org/10.1016/j.cognition.2011.08.005 

Xu, F., & Spelke, E.S. (2000). Large number discrimination in 6-month-old infants. Cognition, 

74, 1–11. https://doi.org/10.1016/S0010-0277(99)00066-9 

Young, L.K., & Booth, J.L. (2015). Student magnitude knowledge of negative numbers. Journal 

of Numerical Cognition, 1, 38–55. https://doi.org/10.5964/jnc.v1i1.7 

Zacks, J.M. (2008). Neuroimaging studies of mental rotation: a meta-analysis and review. 

Journal of Cognitive Neuroscience, 20, 1–19. https://doi.org/10.1162/jocn.2008.20013 

Zohar-Shai, B., Tzelgov, J., Karni, A., Rubinsten, O. (2017). It does exist! A left-to-right spatial–

numerical association of response codes (SNARC) effect among native Hebrew 

speakers. Journal of Experimental Psychology: Human Perception and Performance, 43, 

719–728. https://doi.org/10.1037/xhp0000336 

 


