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Abstract
Modeling and predicting student learning in computer-based environments often
relies solely on sequences of accuracy data. Previous research suggests that it does
not only matter what we learn, but also how we learn. The detection and analysis
of learning behavior becomes especially important, when dealing with open-ended
exploration environments, which do not dictate prescribed learning sequences and
skills. In this paper, we work with data collected from an inquiry-based environment.
We demonstrate that 1) students’ inquiry strategies indeed influence the learning out-
come, and 2) students’ inquiry strategies also seem to be predictive for their academic
achievement. Furthermore, we identified a new positive inquiry strategy, which has
not yet been described in the literature. We propose the use of a probabilistic model
jointly representing student knowledge and strategies and show that the inclusion
of learning behavior into the model significantly improves prediction of external
posttest results compared to only using accuracy data, a result that we validated on a
second data set. Furthermore, we cluster the children into different groups with sim-
ilar learning strategies to get a complete picture of students’ inquiry behavior. The
obtained clusters can be semantically interpreted and are not only correlated to learn-
ing success in the game, but also to students’ science grades and standardized math
assessments. We also validated the cluster solution on a second data set. The inquiry-
based environment together with the clustering solution has the potential to serve as
an assessment tool for teachers and tutors.
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Introduction

Over the last decade, there has been an increase in the use of open-ended learning
environments such as discovery environments (Shute and Glaser 1990), narrative-
centered learning environments (Rowe et al. 2009), or simulations (Wieman et al.
2008). Ideally, students explore different configurations of parameters to infer the
underlying principles. One rationale is that students learn the principles more deeply
through exploration than if they are simply told the principles and asked to practice
applying them (Schwartz et al. 2011). However, not all students apply the inquiry
skills necessary to effectively explore the environment (Kinnebrew et al. 2013;
Sabourin et al. 2013; Mayer 2004). Modeling students’ learning as they try to bene-
fit from relatively open-ended inquiry environments may be a useful next step in our
abilities to support students’ development of independent capacities to learn from
simulations and other discovery environments.

Intuitively, teachers and intelligent systems should be able to observe students’
learning strategies to make formative suggestions to improve learning. In practice,
this can be very difficult, especially in the context of students trying to induce new
rules or principles. Success at observing student learning strategies requires closely
observing how a student goes about learning, and it requires tasks that support stu-
dent opportunities to apply strategies conducive to rule induction. It is much easier
to observe whether a student is achieving a correct or incorrect answer than to
observe the learning strategies. To help clarify this point, we consider two examples
as thought experiments.

First, imagine a math tutor working with a student. The math tutor sees that the
student has made a mistake. A good tutor will track down what caused the mistake to
identify what knowledge the student is missing or misunderstanding. Then, typically,
the tutor will explain the right actions and why, and then provide the student with
a new practice problem targeting the new instructional content. Notice that in this
first example, the tutor is observing closely, but the tutor never observes the student’s
learning strategies. Instead, the tutor observes problem-solving steps and whether the
student offers right or wrong answers. Moreover, the tutor takes charge of the student
learning, so that any student learning strategies do not readily reveal themselves.

Second, consider a scenario where the learning context is more conducive to
observing student learning strategies. In this case, the student is working with an
open-ended learning environment and trying to induce patterns and laws of nature
from an interactive science simulation. The student sets different parameters within
the simulation to see how it changes outcomes. Ideally, the student finds the correla-
tions among variables, and perhaps even infers causal explanations. In this context,
the tutor cannot rely solely on right and wrong answers, because the student is not
responding to specific questions. Instead, the tutor may try to figure out what strate-
gies the student is using to be helpful. This depends on the tutor having a strong
catalog of possible learning strategies for open-ended environments; a knowledge of
which ones are actually effective strategies; and, the ability to recognize which behav-
iors with the interactive simulation correspond to which strategies. For instance, on
the one hand the tutor might notice that the student is exploring boundary conditions
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by setting extreme values, but on the other hand, the tutor might notice that the stu-
dent is not employing a control of variable strategy by systematically varying a single
parameter at a time. Given this observation, the tutor could help the student learn to
use control of variables and improve the learning strategies available to the student,
which in turn, would help the student learn about the phenomena portrayed in the
simulation.

Our goal is to bring artificial intelligence to the second example. Interactive, and
relatively open-ended, simulations are beginning to suffuse education (e.g., as of
March 2019, the PhET simulations project (Wieman et al. 2008) alone, has deliv-
ered 650 million simulations). It is intractable for a teacher to observe a classroom
of children doing heads-down interactions with simulations and infer their learning
strategies. Moreover, the validated catalog of effective strategies remains impov-
erished, in part, because learning from simulations is relatively new, compared to
learning from textbook problems. Artificial intelligence may provide a way to aug-
ment teachers’ abilities to identify and take action on students’ use of learning
strategies in these complex, free-flowing environments. In this paper, we focus on
the first half of this proposition using artificial intelligence to help identify learning.
For example, can the computer help detect learning strategies? Can we determine
which learning strategies are indeed good for learning? Can we characterize them
transparently so that a teacher could conceivably use them as formative assessments?

Specifically, we combine accuracy and strategy data to develop student models
that not only predict learning outcomes within the environment, but also predict stu-
dent performance outside of the environment. As we demonstrate, the analysis of
how students go about learning is particularly useful for predicting performance out-
side the environment, when the presentation of problems looks different. We also
show that clustering students based on strategy and accuracy can reveal important
information about how students choose to learn, which appears to be significant for
how they do in school more generally. To do the work, we rely on an inquiry envi-
ronment designed to help capture information about student accuracy when solving
pre-defined problems, while also tracking their strategies for learning the relevant
information in this environment. The environment is an adaptation of an assessment
framework that Schwartz and Arena (2013) called ‘choice-based assessments’. The
assessments leave it up to the student to choose whether and how to learn. The assess-
ment goal is to determine which strategic choices students spontaneously make when
they are not receiving strong guidance and to determine whether specific choices are
better for learning than other choices. The choice-based assessments, which are typi-
cally presented as games to the students, are each designed to assess specific classes
of learning strategies, including critical thinking (Chi et al. 2014), consultation of
literature (Chin et al. 2016), and feedback seeking behavior (Cutumisu et al. 2015).
In the current instance, we used a choice-based assessment called TugLet, which
is a 10-15 minute interactive game. TugLet differs from prior choice-based assess-
ments, because it also includes specific questions that students must answer correctly
to win the game. It is a hybrid environment – in one ‘room’, students can engage in
inquiry by using a simulation, and in another ‘room’, they can try to solve specific
problems and receive right-wrong feedback.
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In our first contribution, we propose that looking at how students go about
their learning may provide useful information that is not fully captured by their
right/wrong answers. For instance, some students may try to finish as quickly as
possible, whereas others may take steps to understand. While both would even-
tually attain high accuracy within an environment, those who take steps towards
understanding may learn the principles that determine when an answer is right or
wrong. Our extensive analysis of the collected log data demonstrates that students’
exploration choices and strategies significantly influence the learning outcome. We
have also identified a new positive inquiry strategy, which has not been previously
described in the literature. The identified strategy is what separates the top perform-
ing students from the others and is correlated to academic achievement. To bridge
knowledge, operationalized as accuracy, and learning choices, we present a novel
technique for creating simple probabilistic student models jointly representing stu-
dent knowledge and strategies. We evaluate the models’ prediction accuracy within
the computer-based game as well as on an external posttest. Our results demonstrate
that modeling student knowledge and student strategies at the same time significantly
improves predictive performance and therefore constitutes an improved representa-
tion of learning compared to representing knowledge alone. Moreover, we replicate
these results on a new validation data set.

In our second contribution, we cluster students into groups with different inquiry
strategies. The obtained clusters are semantically interpretable. For example, one
cluster captures students who use rapid trial-and-error inquiry, whereas another clus-
ter captures students who simply want to beat the game. The clusters not only predict
how well students do on a subsequent, out-of-game posttest, they also predict stu-
dents’ academic achievements in terms of science grades and scores in standardized
math assessments. Moreover, the cluster solution is stable, as the validation on a sec-
ond independent data set demonstrates. TugLet along with the presented clustering
algorithm therefore has the potential to serve as an assessment tool for teachers and
tutors, ideally providing them new insights into students’ inquiry skills, and ideally,
helping them to improve students’ learning strategies.

RelatedWork

Up to now, research in detecting and analyzing student learning has focused on accu-
rately representing and predicting student knowledge based on the students’ past
accuracy within the computerized learning environment, i.e., the students’ answers
to tasks are assessed and serve as observations for the respective method. One
of the most popular approaches to representing and predicting student knowledge
accurately is Bayesian Knowledge Tracing (BKT) (Corbett and Anderson 1994), a
technique that has been continuously improved over the years, e.g., Pardos et al.
(2012), Wang and Beck (2013), and Yudelson et al. (2013). Other techniques are
based on item response theory, such as the additive factors model (Cen et al. 2007;
2008) or performance factors analysis (Pavlik et al. 2009). Furthermore, dynamic
Bayesian networks have been used to represent and predict student knowledge, e.g.,
González-Brenes and Mostow (2012) and Käser et al. (2014).
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The aforementioned approaches describe student knowledge as a set of skills or
knowledge components used to solve problems, and the way to infer student knowl-
edge is to determine whether they are correct in problem solving. The decomposition
and tracking of fine-grained knowledge acquisition is a major strength of these tech-
niques. Open-ended inquiry environments, however, can be problematic for these
approaches. It is difficult to assign an accuracy parameter when students are freely
experimenting with a simulation rather than responding to ‘right-wrong’ problems.
At the same time, inquiry environments may yield significant information about stu-
dents’ learning strategies, as they try to figure out the rules and principles that govern
the phenomena portrayed in the environment.

Previous research has demonstrated that features such as learning choices, styles,
and strategies influence the learning outcome. Gaševic et al. (2017) clustered students
of an online engineering course according to their learning sequences and demon-
strated that students’ learning approaches were correlated to academic achievement.
Furthermore, the strategies that students applied in an educational game influenced
their implicit science learning (Rowe et al. 2014; Eagle and Barnes 2014). Given the
freedom open-ended learning environments offer to the learner, they afford the oppor-
tunity to analyze their learning strategies, which in turn, should predict their learning
outcomes. Several researchers are working on ways to extend existing student model-
ing approaches to capture learning strategies such as help-seeking (Beck et al. 2008;
Roll et al. 2011; Roll et al. 2014) and off-task behavior (Baker et al. 2004; Baker
et al. 2008) into the respective models. FAST (González-Brenes et al. 2014) is a tech-
nique for integrating general features into BKT. Dynamic mixture models (Johns and
Woolf 2006) and DBNs (Schultz and Arroyo 2014) have been used to trace student
engagement and knowledge in parallel.

A common goal is to detect and analyze learner behavior with the intent of increas-
ing the adaptivity of the system. Sawyer et al. (2018) used time series to represent
student trajectories through a game-based learning environment and computed the
distance to an expert path to get an assessment of students’ problem-solving behav-
ior. Others (Mojarad et al. 2018; Barata et al. 2016; Fang et al. 2018) used clustering
approaches to identify different types of learners. Truong-Sinh et al. (2017) inves-
tigated whether typical learning behavior in a massive open online course (MOOC)
can be transferred to other courses. Zhang et al. (2017) clustered students according
to their problem solving behaviors and demonstrated that students over time tran-
sitioned to better performing clusters. Recent research (Geigle and Zhai 2017) has
also attempted to automatically extract student activity patterns in the form of behav-
ior state-transition graphs from large amounts of MOOC log data using a two-layer
Markov model and showed that the extracted patterns can be interpreted. Kardan and
Conati (2011) have formulated the clustering idea into a student modeling frame-
work for open-ended learning environments: students are clustered online into groups
with similar learning behavior and targeted interventions are designed based on the
clustering solution. When a new student interacts with the environment, the student
is assigned to one of the clusters (and the corresponding intervention). The frame-
work has for example been used to predict the mathematical learning patterns of
students (Käser et al. 2013). It has also successfully been applied to an environment
for learning common artificial intelligence algorithms (Amershi and Conati 2009;
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Kardan and Conati 2011). Recently, Fratamico et al. (2017) used the framework to
build student models for an interactive simulation of electric circuits.

The classification approach has two main advantages compared to traditional stu-
dent modeling approaches. It does not depend on the explicit testing of students’
knowledge components and it can ideally support individualization based on classi-
fication. Thus, on the one hand, traditional student modeling approaches allow for a
more fine-grained delineation of student knowledge, as they track student accuracy
at each step. On the other hand, approaches that emphasize learning behaviors and
strategies provide information relevant to classifying and supporting students who
take different approaches to learning on their own.

In this paper, we contribute to both the traditional student modeling and the
clustering-based student modeling research strands. First, we develop a probabilis-
tic model able to jointly represent student knowledge and strategies and demonstrate
that incorporating inquiry strategies into the model significantly improves prediction
of external posttest results compared to only using accuracy data. Second, we cluster
the children into different groups with similar inquiry behavior. The obtained clus-
ters can be semantically interpreted and are not only correlated to learning success in
the game, but also to students’ science grades and standardized math assessments.

Tuglet - the Game

To examine the relation between inquiry strategies and correct answers, we devel-
oped TugLet, a short interactive computer-based educational game. The topic of the
game is tug-of-war. Tug-of-war is the name for the game where people grab opposite
sides of a rope and try to drag the other team across a center line. The educational
goal of TugLet, which is not revealed to the students, is to discover the underlying
principles governing the tug-of-war. Students can achieve this through two different
modes: Explore and Challenge.

In the Explore mode (illustrated in Fig. 1 (top left)), players interact with a sim-
ulation: they can set up opposing tug-of-war teams and see how they fare against
each other. Each team consists of a maximum of four team members denoted by the
yellow dots. Available characters for the teams come from three different force cat-
egories: large (force f = 3), medium (f = 2), and small (f = 1). The characters
can be dragged up from the bottom of the screen onto the yellow dots to the left and
right side of the carriage. Once the student is happy with the two teams, (s)he hits
the play button to simulate the tug-of-war and observe the outcome. Each time the
student presses the play button, we record the simulated configuration, i.e., the exact
weights (and positions) of the left and right teams in a so-called tug-of-war set-up.

The Challenge mode tests the students’ knowledge about the forces: the students
predict the outcome of a tug-of-war (see Fig. 1 (bottom left)). This mode consists
of eight questions constrained to have increasing complexity. These eight questions
are structured as follows: one very easy question, two easy questions, two medium
questions, and three hard questions. Questions are picked randomly within the given
category. Questions categorized as very easy have an obvious winner, i.e., for many of
these questions, the teams on the left and right sides are identical. Easy questions can
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1)
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Fig. 1 The goal of the TugLet game is to discover the rules governing the tug-of-war by simulating
different team set-ups in the Explore mode (top left). Students can drag up a maximum of four weights
from the bottom of the screen to the left side (red) and the right side (blue) of the carriage. The tug-of-war
can be simulated by pressing the Play button at the bottom left of the screen. Students can enter Challenge
mode at any point in time by pressing the Star button at the top right of the screen. In Challenge mode
(bottom left), students have to determine the winner of given tug-of-war configurations. The knowledge
taught is assessed in the posttest (right): the left team is fixed and students have to select all the right teams
leading to a tie. The second case for example results in a tie, since the force of three small (S) characters
is equal to the force of one large (L) character

usually be answered intuitively, i.e., the team consisting of more characters (weights)
is the winner (e.g., two medium weights on the left side versus four medium weights
on the right side). Questions categorized as medium require knowledge about the
relation between small and medium weights. To answer hard questions the relations
between all different characters need to be understood. Once in Challenge mode, stu-
dents get presented questions until they either make a mistake or pass the game. In
case of making a mistake, the student is put back into Explore mode. However, stu-
dents can immediately return to the Challenge mode without doing any explorations
if they choose so.

At the beginning, all students start in a simplified Explore mode with only two
characters (one large, one small) available per team. The Challenge mode is blocked
for the first minute of the game. After that, students can enter the Challenge mode
as they wish. The game is over after correctly answering the maximum of eight
Challenge questions in a row or after a maximum play time of 15 minutes.

The free choice between Explore and Challenge mode is an important design
feature of TugLet. The game allows us to evaluate students’ choices relevant to
learning. For example, do they spend all their time in the Challenge mode in an
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attempt to beat the game, or do they choose to engage in experimentation, or some
combination of the two?

TugLet comes with a short computer-based posttest measuring the knowledge
acquired in the game. This allows us to determine to what extent choices and correct
answers predict near transfer beyond the game itself. This is not a case of spontaneous
transfer, where students need to realize which knowledge is relevant. Instead, it is
a near transfer where students need to figure out how their previous learning maps
to a new situation that is obviously relevant to what they have previously learned.
The fact that students can ‘level up’ in a game does not mean they have learned
well enough to use the knowledge outside of the game, even in a slightly modified
format, which is one of the things we show below. The posttest assesses the students’
knowledge about the forces and the relations between the different characters of the
game. Students are presented with a fixed tug-of-war team for the left side and with
ten different tug-of-war teams for the right side. The task is to select all the cases
from the right side that will result in a tie. There are four configurations resulting in
a tie. The posttest is scored as follows: each example correctly elected as a tie results
in adding one point (true positive), while one point is deducted for each incorrect
selection (false positive). Hence, the total posttest score corresponds to the number
of true positives minus the number of false positives. The maximum possible score
is therefore 4 and we set the minimum posttest score to be 0. A summary sketch of
the posttest is provided in Fig. 1 (right), where ‘L’ denotes a large character, ‘M’ a
medium character, and ‘S’ stands for a small character.

Knowledge Representation

To assess student learning and strategy use within the game, the domain knowledge
needs to be formalized in a way that can accommodate different levels of student
proficiency. We represent the knowledge of the students as a set of hierarchical rules
describing the relations between the forces of the different characters. The complete
TugLet rule set consists of n = 12 rules R = {Ri} with i ∈ {1, . . . , n} and is
listed in Table 1. The first three rules are meta-rules defining the basic tug-of-war
concepts. The remaining nine rules (rules R4 to R12) describe inequality and equality
relations between the forces of the different characters. The rule set in R contains all
the rules necessary to solve all possible configurations in the game as well as in the
posttest. Note that a subset of the rules would (theoretically) be enough to derive the
relations between the forces of all characters. The rules R4, ..., R6, R8, and R10, ...R12
can for example be derived from rules R7 and R9. The hierarchy of the rule set is
necessary, because the students tend to learn in smaller steps, i.e., they test simpler
hypotheses first (e.g., R5: ‘L > S’). The final rule set R therefore is the subset of
all possible correct rules necessary to determine the winning side of all tug-of-war
set-ups encountered in TugLet and in the associated posttest.

Given the set of rules, the winning side of a specific tug-of-war configuration can
be determined by iteratively applying the available rules. Each tug-of-war configura-
tion is associated with a minimum subset RN ⊆ R of rules necessary to determine
the winning side. The calculation of RN is performed as follows: each rule Ri ∈ R
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Table 1 Rule set R representing the domain knowledge, i.e., the relationships between the different
characters

Label Rule Description

R1 Equality Exact same teams on both sides result in a tie.

R2 Cancellation Same characters on both sides can be canceled out.

R3 More More characters of the same force win.

R4 M > S Medium character (f = 2) beats small character (f = 1).

R5 L > S Large character (f = 3) beats small character (f = 1).

R6 L > M Large character (f = 3) beats medium character (f = 2).

R7 M = 2·S Medium character (f = 2) is equal to two small characters (f = 1 + 1).

R8 L > 2·S Large character (f = 3) beats two small characters (f = 1 + 1).

R9 L = 3·S Large character (f = 3) is equal to three small
characters (f = 1 + 1 + 1).

R10 L = M + S Large character (f = 3) is equal to a medium and a
small character (f = 2 + 1).

R11 2·M > L Two medium characters (f = 2 + 2) beat one large
character (f = 3).

R12 S + L = 2·M A small and a large character (f = 3 + 1) are equal
to two medium characters (f = 2 + 2).

has a set of conditions attached under which this specific rule can be applied. Rule
R7 for example requires the presence of at least one medium character on the left
(or right) side, respectively and a minimum of two small characters placed on the
right (or left) side, respectively. To build RN , the system iterates through the rules
Ri ∈ R and applies them, until no more rules can be applied and hence the winning
side is determined. During this process, the meta rules (R1, R2, and R3) as well as
the simpler rules describing basic relationships between characters (e.g., R4 or R5)
are prioritized. The resulting rule set RN consists of all the applied rules. Figure 2
shows two possible solutions for the calculation of the rule set RN for an ambigu-
ous configuration, i.e., there is more than one sequence of rules leading to the correct
determination of the winning side. Due to the prioritization of simpler rules, our
algorithm will result in the rule set RN = {R2, R8}.

R2

R8

R10

R4

M S SL M M S SL M

S SL SM

Fig. 2 Example tug-of-war configuration with one large (L), two medium (M) and two small (S) charac-
ters. The winning side can for example be determined by applying RN = {R2, R8} (left) or RN = {L,R4}
(right)
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During game play, the students implicitly encounter these rules by testing out
tug-of-war configurations in the Explore mode and by answering questions in the
Challenge mode. We assume that each tug-of-war set-up encountered provides an
opportunity for learning the principles governing the tug-of-war, i.e. the rule set. The
rules, which can be acquired (or strengthened) from a given set-up are exactly the
rules Ri ∈ RN associated with the given set-up.

Experimental Setup

We collected two different data sets, an evaluation data set and a validation data
set to ensure that our findings can be replicated. The set-up was the same for both
studies: students played TugLet for a maximum time of 15 minutes, followed by
a short computer-based posttest. During game play, all the user interactions were
recorded in log files. The students had no prior experience with the topic from the
science curriculum and had not used the PhET forces and motion simulation (Wie-
man et al. 2008), which was the inspiration for TugLet (https://phet.colorado.edu/
en/simulations/category/new).

Evaluation Data Set (ED). The data set used consists of 127 students (68
male, 59 female) attending the 8th grade of a public middle school in California.
Children come from households with medium socio-economic status (SES).

Validation Data Set (VD). The data set used consists of 152 students (54
male, 83 female, 5 no information) in the 8th grade of a different public middle
school. The school is serving a district with families with medium to high SES.

The statistics of both data sets are listed in Table 2. Besides the total number of stu-
dents per data set, we also specify variables describing the behavior and performance
of students in the game. The percentage of time spent in Explore mode is computed
as the ratio between the total amount of time spent in Explore mode and the total
amount of time spent on the game. The number of Challenge questions answered

Table 2 Descriptive statistics of the ED and the VD. The maximum score in the posttest is 4. The percent-
age of time spent in Explore mode denotes the time (in s) spent in Explore mode divided by the total time
(in s) spent in the game

Measure Evaluation data set Validation Data Set

Number of students 127 (54% male) 152 (36% male)

Grade 8th grade 8th grade

Percentage of time spent in Explore mode 27% 23%

Number of Challenge questions
answered (SD)

37.2 (σ = 27.3) 35.7 (σ = 26.7)

Percentage of students passing the game 87% 97%

Average posttest score (SD) 1.9 (σ = 1.6) 2.5 (σ = 1.5)
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indicates how fast students passed the game. Students from the VD performed sig-
nificantly better on the posttest than students from the ED (p < .01). There is no
significant difference in the total number of Challenge questions needed to pass the
game between the students of the two data sets. However, students of the ED spent
more time in the Explore mode (p = .016).

We organize the following sections according to our two main contributions.
Using the ED, we first demonstrate that a combined model of performance and

strategies is better at predicting transfer than a model relying on student answers
(correct/wrong) only. We do so by training different types of models on the interac-
tion data from the the game and use them to predict students’ posttest answers. This
result demonstrates that passing the game does not mean that students have learned
well enough to apply the knowledge outside the game. Instead, also students’ learn-
ing strategies are essential. We then test our combined model on the VD and replicate
the findings. The different probabilistic models and their resulting prediction accu-
racy on the ED have been published in 2017 (Käser et al. 2017). Here, we restate and
extend these results as a basis for our analysis on the VD.

In a second step, we show that computerized inquiry environments (e.g., simu-
lations) can reveal important information about how students choose to learn. We
derive several clusters of student learning strategies and performance on the ED.
The clusters can be semantically interpreted and are correlated to students’ academic
achievement. Furthermore, the obtained clusters and their interpretation is validated
on the VD. This shows that TugLet along with the cluster solution could be used as
a formative assessment by teachers.

Joint Models of Strategy and Performance

In this section, we demonstrate that including students’ exploration strategies into a
predictive model increases our ability to predict out-of-game performance compared
to a pure knowledge model. We first present an analysis of students’ exploration
strategies in the game. We then build different probabilistic models based on the
approach of Bayesian Knowledge Tracing (BKT) and show that a joint model of
performance and strategies is best in predicting performance on the posttest.

Exploration Strategies

Most of the students (87%, n = 111) from the ED managed to pass the game within
the given time-frame, i.e., they solved eight problems of increasing complexity in a
row correctly. However, only 24% (n = 31) of the students had a perfect posttest.
And 26% (n = 33) of the students had a score of 0 in the posttest. These results
demonstrate that it is possible to be accurate in the game yet do unexpectedly poor
out of the game.

Therefore, we investigated the trajectories of the students through the game and
examined the set-ups students simulated in the Explore mode. We illustrate the differ-
ent trajectories and exploration behaviors using three example students (Fig. 3 (top)).
While student B had a perfect posttest, students A and C had a posttest score of 1 and
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Fig. 3 Comparison of the trajectories and the simulated tug-of-war set-ups for student A (left), student
B (middle) and student C (right). In the trajectory plots (top), each circle (or cross) denotes one attempt
to pass Challenge mode. A circle at position (2, 5) for example means that the student answered five
questions in a row correctly before making a mistake at question 6, when trying to pass Challenge mode for
the 2nd time. The size of the circle denotes the number of tug-of-war configurations simulated in Explore
mode right before the actual Challenge attempt. A cross means that the student did not explore at all, but
went directly back to Challenge mode. The illustration of the explored set-ups (bottom) demonstrates that
student B systematically tests the relations between the different characters. Student A and student C on
the other hand do not seem to profit from their exploration

0, respectively. The x-axis of Fig. 3 (top) describes the number of challenge attempts:
each time the student enters the Challenge mode and tries to pass the game is counted
as one challenge attempt. The y-axis denotes the level the student achieved in the
actual challenge attempt. The level reached is equivalent to the number of questions
answered correctly in a row. The size of the circles indicates how many tug-of-war
set-ups the student simulated in Explore mode. Each time the student simulates a tug-
of-war in Explore mode, we record the weights (and positions) in the left and right
team in a so-called tug-of-war set-up. A cross stands for zero tug-of-war set-ups.
Therefore, in the 3rd attempt to pass the Challenge mode, student A answered five
questions in a row correctly before making a mistake. The student did not explore at
all before that attempt, but entered Challenge mode directly. The sample trajectories
suggest that low performing posttest students need more challenge attempts to pass
the game. Indeed, there is a significant negative correlation (ρ = −0.28, p = .001)
between the number of challenge attempts and the achieved posttest score. While all
three example students explore several set-ups at the beginning, student A gives up on
simulating set-ups soon after the initial simulation phase. This observation suggests
that students with a good posttest performance explore more: the average number of
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tug-of-war set ups tested in Explore mode in-between two attempts to pass the Chal-
lenge mode is positively correlated to posttest accuracy (ρ = 0.18, p = .048). Yet,
Fig. 3 (top) also shows, that student C keeps exploring, but does not seem to profit
from the simulated tug-of-war set-ups.

One hypothesis for the reason behind these observations is that the good perform-
ers possess better inquiry strategies, i.e., they simulate more informative tug-of-war
set-ups. Figure 3 (bottom) illustrates this behavior. Student B systematically simu-
lates tug-of-war set-ups exploring the relations between the different characters. The
student tests first how many small characters are equal to one medium character and
then goes on to figure out, how many small characters are equal to one large character.
This sequence corresponds to testing the following three rules: R7, R8, and R9 (see
Table 1). Student C on the other hand just relies on simulating the exact (or a varia-
tion of the) set-up of the last question he answered wrong in the Challenge mode. An
analysis of the further trajectory confirms that student C indeed always just simulates
the set-up of the last wrong challenge question. Student A seems to vary one char-
acter at a time. This is a good example of the venerable control of variables strategy.
However, the student has created a setup that is too complex to figure out how the
variables interact with one another. We also observe, that determining the winner of
this set-up requires the application of several rules, i.e., RN = {R2, R8}. We there-
fore propose that the fewer rules needed to determine the winner of the tug-of-war
set-up, the more informative the set-up is.

Given this observation, we divide all tug-of-war set-ups tested in the Explore mode
into three categories: ‘strong’, ‘medium’, and ‘weak’. This categorization is com-
puted automatically based on the set of rules RN necessary to determine the winner
of the given tug-of-war configuration. We found that a good exploration strategy
focuses on isolating one underlying principle at a time. Therefore, a set-up is con-
sidered as ‘strong’, if the student tests exactly one new rule Ri , i.e., |RN | = 1 and
Ri ∈ RN is seen for the first time. If the rule Ri has been tested or seen previously,
the set-up is categorized as being ‘medium’. If the set-up tests two rules and one of
them is the cancellation rule R2, i.e., |RN | = 2 and R2 ∈ RN the tested config-
uration is labeled as a ‘medium’ hypothesis. We assume that the student could still
draw conclusions (i.e., find a new rule Ri) by first applying the cancellation rule
R2 (see Table 1) and thus reducing the configuration to a set-up testing exactly one
rule. If |RN | = 2 ∧ R2 /∈ RN , the tested set-up is put into the ‘weak’ category. We
also categorize tug-of-war set-ups as being ‘weak’ hypotheses if they require more
than two rules to determine the winning side, i.e., if |RN | > 2. A set-up testing too
many principles at the same time does not allow one to draw conclusions on rela-
tions between single characters. An analysis of the training data reveals, that better
performers indeed seem to have superior exploration strategies: there is a significant
positive correlation between the number of ‘strong’ tug-of-war set-ups tested and the
achieved accuracy in the posttest (ρ = 0.21, p = .019). Thus, one of the outcomes
of this analysis is to identify a previously undocumented inquiry strategy, to which
we return in the Discussion section.
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Probabilistic Models of Performance and Strategies

To investigate the influence of the exploration strategies on the prediction accuracy
of a model, we built three different probabilistic graphical models. All three mod-
els are based on the approach of BKT and use the set of rules (see Table 1) as an
underlying representation of knowledge, i.e., as knowledge components. Similar to
BKT, we employ one Hidden Markov model (HMM) per rule. The structure of the
graphical model is illustrated in Fig. 4. All three models share the same basic under-
lying structure. The binary latent variable KRi,t represents, whether the student has
mastered rule Ri at time t . In our case, one time step is equivalent to one tug-of-
war configuration simulated in Explore mode or one question answered in Challenge
mode. The input variable ORi,t is also binary and indicates, whether a student has
correctly applied Ri at time t . Prediction is performed as follows: the predicted prob-
ability p̂C,t that the student will correctly determine the winning team of a tug-of-war
configuration C at time t depends on the predicted probabilities p̂(ORi,t = 1) of the
rules Ri ∈ RNC

:

p̂C,t =
∏

Ri

p̂(ORi,t = 1), Ri ∈ RNC
. (1)

We make one small adjustment to the traditional BKT model: we allow the forgetting
parameter to be non-zero (pF >= 0). Recent work on comparing different types
of knowledge tracing models (Khajah et al. 2016) has demonstrated that including
forgetting into BKT leads to superior predictive performance. While all three differ-
ent probabilistic graphical models share this same basic structure, they differ with
respect to their input. As mentioned above, ORi,t describes, whether a student has
applied rule Ri at time t correctly. However, from the students’ interaction data, we
do not get information about a specific rule Ri , but about the rule set RNC

: in Chal-
lenge mode, we observe whether the student has answered a question associated with

Fig. 4 The Pure Challenge Model (PCM), Correct Hypotheses Model (CHM) and Weighted Strategy
Model (WSM) share the same graphical structure and the following parameters: p0 (initial probability
of knowing a rule a-priori), pL (probability of learning an unknown rule), pF (probability of forgetting
a known rule), pS (probability of incorrectly applying a known rule), and pG (probability of correctly
applying an unknown rule). However, they differ with respect to their input and the way this input is
encoded in terms of the observed variables oRi = [

oRi,1 , ..., oRi,T

]
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a tug-of-war configuration C correctly. In Explore mode, we record the tug-of-war
configuration C that the student has tested. However, most tug-of-war configurations
C require more than one rule Ri to determine the winner, i.e. |RNC

| > 1 . Therefore,
ORi,t is not directly observed, but derived from the interaction data. The encoding of
the variable ORi,t is then different for each model type.

Pure Challenge Model. The pure challenge model (PCM) encodes correctness as
follows: If a student answers a challenge question at time t correctly, we assume
that all rules Ri ∈ RNC

have been applied correctly, i.e., oRi,t = 1, ∀Ri ∈ RN .
If the student gives an incorrect answer, we know that at least one rule Ri ∈ RN

has been applied incorrectly. As we cannot directly observe, which rule(s) are
unknown to the student, we assume that all rules Ri ∈ RN have been applied
incorrectly, i.e., oRi,t = 0, ∀Ri ∈ RN . Note that in the PCM, we do not represent
actions performed in the Explore mode.

Correct Hypotheses Model. The correct hypotheses model (CHM) is an exten-
sion of the PCM. We encode the answers to the challenge questions in the same
way as for the PCM. However, in contrast to the PCM, the CHM also incorporates
the actions performed in Explore mode. For each tug-of-war set-up H tested in
Explore mode, we first compute the rule set RNH

necessary to determine the
winning side of the simulated tug-of-war configuration. We then assume that all
rules in RNH

have been applied correctly, i.e., oRi,t = 1, ∀Ri ∈ RNH
. Let us

assume that the student has simulated the set-up illustrated in Fig. 2 at time t . For
this set-up, RNH

= {R2, R8}. We therefore assume that the student has applied
R2 and R8 correctly at time step t , and feed oR2,t = 1 and oR8,t = 1 into the
probabilistic models for rule R2 and rule R8.

Weighted Strategy Model. The weighted strategy model (WSM) is based on the
observation that exploration behavior significantly influences posttest perfor-
mance. We encode answers in Challenge mode as described in the PCM and rules
encountered in Explore mode as explained in the CHM. However, the WSM intro-
duces a weighting of the different observations. Observations associated with a
tug-of-war set-up simulated in Explore mode are weighted according to the three
categories ‘strong’, ‘medium’, ‘weak’ as defined previously. Observations associ-
ated with answers in Challenge mode are weighted based on their correctness. The
sequence of T observations oRi for a rule Ri is therefore given by

oRi = (o
w1
Ri,1

, o
w2
Ri,2

, ..., owT

Ri,T
), (2)

with weights wj , j ∈ 1, ..., T specified as follows:

wj =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

whs oRi,j
is a strong hypothesis.

whm oRi,j
is a medium hypothesis.

whw oRi,j
is a weak hypothesis.

wcw oRi,j
is a wrong challenge answer.

wcs oRi,j
is a correct challenge answer.

(3)
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The weights whs , whm, and whw are therefore related to the observations in Explore
mode, while the weights wcw and wcs are related to the answers in Challenge mode.
Furthermore, as described in Eq. 2, the weights do not have an influence on the struc-
ture or the update equations of the model, because they constitute a pure manipulation
of the input sequences oRi . Therefore, we can treat the weights w = (whs, whm, whw,

wcw, wcs) as hyperparameters and learn them from the collected data using cross val-
idation. The new feature of the WSM in terms of student modeling is that it is able to
represent student knowledge and exploration strategies, i.e., the quality of students’
tested hypotheses, jointly in one model. In contrast to previous work (González-
Brenes et al. 2014) also allowing for the integration of additional features into a BKT
model, in the WSM, the strategies directly influence the (hidden) knowledge state.
This technique allows us to carry information about students’ quality of exploration
collected during the game over to the posttest. Furthermore, the chosen approach
training weights for the Explore and the Challenge mode enables us to directly use
the trained model to predict students’ posttest answers by treating the posttest as a
variation of the Challenge mode.

Experimental Evaluation

We evaluated the predictive accuracy of our models within the TugLet environment
as well as on the posttest using the ED. We applied a train-test setting, i.e., parameters
were fit on the training data set and model performance was evaluated on the test
set. Predictive performance was evaluated using the root mean squared error (RMSE)
as well as the area under the ROC-curve (AUC). The RMSE is widely used for the
evaluation of student models (Pardos and Heffernan 2010; Wang and Beck 2013;
Wang and Heffernan 2012; Yudelson et al. 2013). The AUC is a useful additional
measure to assess the resolution of a model, i.e., how much predictions of the model
differ from the base rate.

Within-Game Prediction. The prediction accuracy of the PCM and the CHM
models on the log files collected from TugLet was evaluated using student-
stratified (i.e., dividing the folds by students) 10-fold cross validation. As the
estimation of model performance during parameter tuning leads to a potential
bias (Boulesteix and Strobl 2009; Varma and Simon 2006), we use a nested 10-
fold student-stratified cross validation to estimate the predictive performance of
the WSM and at the same time to learn the optimal weights wopt for this model.
We learned the parameters pi ∈ {p0, pL, pF , pG, pS} of all the models using a
Nelder-Mead (NM) optimization (Nelder and Mead 1965). The NM algorithm is
often used for optimization problems due to its simplicity and fast convergence
rate. We used r = 50 random re-starts for the NM algorithm, because the NM algo-
rithm is known for getting trapped into local optima and to be sensitive to the initial
starting values (Nelder and Mead 1965; Parkinson and Hutchinson 1972). We used
the same parameter constraints for all models: pi ≤ 0.5, if i ∈ {L, F, G, S}. The
prior probability p0 remained unconstrained. We optimized the weights for the
WSM model using a grid search, i.e., we set w = (whs, whm, whw, wcw, wcs) ≥ 1
and w = (whs, whm, whw, wcw, wcs) ≤ 4 and searched all valid combinations.
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We then predicted students’ answers in Challenge mode (correct/wrong) using the
trained models and applying Eq. 1.

The WSM demonstrates the highest accuracy within the game, i.e., when pre-
dicting the student answer (correct/wrong) to a given Challenge question at any
point in the game (RMSEWSM = 0.33). The inclusion of exploration choices
into the model led to a reduction in RMSE by 2.6% (RMSEPCM = 0.36,
RMSECHM = 0.35), the representation of strategies further reduced the RMSE
by 4.4% (RMSECHM = 0.35, RMSEWSM = 0.33). A one-way analysis of vari-
ance performed on the per-student RMSE, i.e., the RMSE computed over the
predicted Challenge answers separately for each student, of the different models
shows that there are indeed significant differences between the mean RMSEs of
the different models (F(2, 366) = 6.90, p < .01). Post hoc comparisons using
the Tukey HSD test indicate that there is no significant difference in performance
between the PCM and the CHM (p = .34), while the WSM significantly out-
performs the PCM (p < .001). The difference between the WSM and the CHM
shows a trend to significance (p = .06). The differences in per-student AUC, i.e.,
the AUC again computed separately for each student using his or her predicted
Challenge answers, between the models are not significant (AUCPCM = 0.80,
AUCCHM = 0.79, AUCWSM = 0.80).

The optimal weights found for the WSM are wopt = {3, 1, 1, 1, 2}. Tug-of-war
set-ups classified as ‘strong’ hypotheses have a higher impact than set-ups falling
in the ‘medium’ or ‘weak’ categories (whs = 3, whm = 1, whw = 1). ‘Strong’
hypotheses are also assigned more weight than correct answers to challenge
questions (whs = 3, wcs = 2). This result demonstrates that the identified inquiry
strategy indeed seems to be predictive for student learning.

Posttest Prediction. To evaluate the predictive performance of the different mod-
els on the posttest, we used all within-game observations (i.e., actions performed
within the TugLet environment) for training and predicted the outcome of the
external posttest. We again used r = 50 random re-starts for the NM algorithm.
We constrained the parameters of all models as described for the within-game
prediction: pi ≤ 0.5, if i ∈ {L, F, G, S}. The prior probability p0 remained
unconstrained. For the WSM, we can safely use the optimal weights wopt =
{3, 1, 1, 1, 2} found in the nested cross validation, since this optimization was per-
formed on within-game data only. We predicted students’ answers in the posttest
(right/wrong) again by applying Eq. 1. Prediction accuracy in terms of the RMSE
and the AUC was computed using bootstrap aggregation with re-sampling (b =
100). Figure 5 (left) displays the error measures (with standard deviations) for the
PCM, CHM, and WSM models.

The WSM shows the best performance for both error measures. Modeling
exploration behavior even in a simplistic way leads to an improvement in RMSE
of 4.55% (RMSEPCM = 0.44, RMSECHM = 0.42). Categorization of the differ-
ent explored set-ups plus the introduction of weighted observations decreases the
RMSE by another 7.6% (RMSECHM = 0.42, RMSEWSM = 0.39).
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Fig. 5 Comparison of posttest prediction accuracy of the PCM (brown), the CHM (purple), and the WSM
(red) on the ED (left) and the VD (right). The WSM outperforms the two other models regarding the RMSE
and the AUC on both data sets

The low standard deviations in RMSE (σPCM = 0.01, σCHM = 0.01,
σWSM = 0.01) indicate significant differences between the different models. A
one-way analysis of variance confirms that there are indeed significant differences
between the RMSEs of the different models (F(2, 297) = 633.46, p < .001).
Post hoc comparisons using the Tukey HSD test indicate that all model means are
significantly different from each other (p < .001 for all comparisons).

The WSM also exhibits a higher AUC than the PCM and the CHM (AUCPCM =
0.60, AUCCHM = 0.59, AUCWSM = 0.62). Although the standard deviations
(σPCM = 0.02, σCHM = 0.03, σWSM = 0.02) are higher than for the RMSE, a
one-way analysis of variance suggests that the mean AUCs of the different mod-
els are not the same (F(2, 297) = 30.22, p < .001). Post hoc comparisons using
the Tukey HSD test indicate that the differences between the PCM and the CHM
are not significant (p = 0.18), while the WSM significantly outperforms the PCM
(p < 0.001) and the CHM (p < 0.01). We therefore conclude that jointly rep-
resenting students’ accuracy and how students go about learning offers a better
representation of student learning than a pure performance model.

Model Validation

To assess the validity of our findings, we applied the PCM, CHM, and WSM to the
VD. To compute the prediction accuracy of the PCM, the CHM, and the WSM on the
VD, we used the ED as our training data set: we learned the parameters of all three
models and the optimal weights for the WSM using all within-game observations
(i.e., actions performed within the TugLet environment) from the ED. The VD was
used as our test data set: we used the models along with their parameters and weights
trained on the ED to predict the outcome of the external posttest of the VD. Figure 5
(right) displays the error measures (with standard deviations) for the PCM, CHM,
and WSM models.
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As observed already on the ED, the WSM shows the best results for both error mea-
sures. Including exploration behavior into the model decreases the RMSE by 7.7%
(RMSEPCM = 0.43, RMSECHM = 0.40). The weighting of the different strategies
leads to a further improvement of 14.6% (RMSECHM = 0.40, RMSEWSM = 0.34).
A one-way analysis of variance indicates that there are indeed significant differ-
ences between the mean RMSEs of the different models (F(2, 147) = 6473.93,
p < .001). Post hoc comparisons using the Tukey HSD test indicate that all the
models’ mean RMSEs are significantly different from each other (p < .001 for all
pair-wise comparisons).

The WSM also exhibits a higher AUC than the two other models (AUCPCM =
0.58, AUCCHM = 0.58, AUCWSM = 0.59). Again, a one-way analysis of variance
confirms that there are significant differences between the mean AUCs of the three
models (F(2, 147) = 15.64, p < .001). Post hoc comparisons using the Tukey
HSD test indicate that while the differences between the PCM and the CHM are not
significant (p = 0.26), the WSM significantly outperforms the other two models
(p < .001).

These findings demonstrate that our model is valid for different data sets. There-
fore, the identified new inquiry strategy, characterized by the testing of ‘strong’
set-ups, generally seems to be the optimal strategy for reliably learning the content.

Groups of Children with Similar Inquiry Strategies

In the previous section, we demonstrated that modeling students’ inquiry behavior
increases our ability to predict transfer: the WSM ties or outperforms the PCM and
the CHM when predicting students’ answers during the game, and, more impor-
tantly, it significantly outperforms the other models when predicting who has truly
learned the rules of the game (as assessed by the posttest). The WSM represents
student answers and the quality of their inquiry jointly in one model, providing an
accurate prediction of students’ posttest performance. This result suggests that mea-
suring what students learn in terms of their right/wrong answers is not enough. It
is important to also measure how they learn in terms of the quality of their explo-
ration. In order to use our findings for assessment as well as for instruction in terms
of a targeted intervention, a more detailed profile of the different choices and strate-
gies is necessary. Ideally, the profiles will be semantically transparent so they can
support teacher decision making, though this is not guaranteed by using a clustering
algorithm, which we describe next.

Clustering is an approach to identify groups of students with similar characteristics
in the data. In contrast to the developed joint models of performance and strate-
gies, which represent the average student behavior (parameters are fit based on the
whole data set), clustering allows for describing the behavior of different groups.
Given the observed differences between the exploration and challenge behaviors of
the students, we were interested in finding groups of children with similar inquiry
patterns.

In this section, we demonstrate that we can derive semantically interpretable clus-
ters of students with similar inquiry behavior. One cluster for example contains
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students, who systematically test the principles behind the tug-of-war, while another
cluster captures students who just try to beat the game. The found clusters are not
only correlated with posttest scores, but also with students’ science grades and stan-
dardized assessments in math. Furthermore, we obtain the same cluster structure on
a second independent data set: the high cluster stability (Lange et al. 2004) of 0.82
provides another validation of our cluster solution.

Extracted Features and Clustering Algorithm

Students are clustered after having completed the game using features describing
their trajectory through the game, listed in Table 3. We extracted features from the log
data, describing three dimensions of inquiry behavior. The first dimension illustrates
how fast the students learn and is reflected by the number of challenge questions NC
needed to pass the game. Our analysis have shown that there is a significant negative
correlation between NC and the posttest score. The second dimension indicates the
student’s inquiry behavior, i.e., whether the student tries to figure out the principles
of the tug-of-war or just wants to beat the game. We describe this dimension using the
number of explored set-ups NE. The third dimension indicates whether the student
possesses good strategies for inquiry. This dimension is reflected by the number of
strong explores NSE. The quality of the tested set-ups was found to be predictive for
transfer in our previous analysis.

To describe student performance and behavior over time, all the features are cal-
culated by level. We divide the game into eight levels, which is exactly the number
of correct challenge answers in a row needed to pass the game. Level n is marked as
reached when the student answers exactly n challenge questions in a row correctly
for the first time. The features are therefore cumulative and can be described using
eight-dimensional vectors. If a level n − 1 is never reached because a student jumps
from level n − 2 directly to level n, the value from level n is used to fill in position
n − 1.

Therefore,

NCB = [1, 5, 5, 10, 19, 19, 19, 19] (4)

for student B in Fig. 3.
We compute the pair-wise dissimilarities dij between all students for each feature

using the Euclidean distance as our similarity measure between the feature vectors of
student i and student j . For n students, we obtain the three n x n dissimilarity matri-

Table 3 Extracted features and abbreviations (bold) used in the following

Feature Description

Number of challenge questions Total number of challenge questions until passing a level.

Number of explored set-ups Total number of set-ups tested until passing a level.

Number of strong explores Total number of explored set-ups rated as strong until passing a level.
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ces DNC,DNE,DNSE. After normalizing the dissimilarity matrices, they are summed
up to the overall dissimilarity matrix D, i.e.,

D = DNC + DNE + DNSE. (5)

Since the distance matrix D describes relations (i.e., distances) between the students,
we performed pair-wise clustering (PC) (Hofmann and Buhmann 1997) on D. The
PC algorithm takes the distance matrix D as input and performs a kernel transforma-
tion to a (usually higher-dimensional) Euclidean space. In this space, the dissimilarity
values can be interpreted as distances between points. As a next step, K-Means Clus-
tering is applied to the Euclidean embedding of the dissimilarity data. The optimal
number of clusters kopt is determined by the Bayesian Information Criterion (BIC)
using the algorithm presented by Pelleg and Moore (2000): the log-likelihood of the
cluster solution is computed under the assumptions that the clusters follow identical
spherical Gaussian distributions, which is the type of distribution assumed by the K-
Means algorithm. For a solution with k clusters, the free parameters are the k − 1
prior probabilities for the clusters, the m · k cluster centroids coordinates (were m is
the dimension of the embedding Euclidean space), and one variance estimate.

Resulting Clusters

We clustered the np = 111 students (out of n = 127 students) of the ED, who passed
the game. The best BIC score was reached for k = 7 clusters. A detailed description
of each cluster is given in Table 4: one row corresponds to one cluster and denotes the
cluster centroids along with the mean posttest score per cluster and the mean cluster
science grade. To keep the table legible, we only display four dimensions of the
cluster centroids (levels 1, 3, 5, and 8). In TugLet, challenge questions are ordered
by difficulty as follows: one very easy question (level 1), two easy questions (level 3),
two medium questions (level 5), and three difficult questions (level 8). To examinate
the relation between the clusters and students’ grades, we sort the clusters according
to the average posttest scores, which were not fed into the clustering algorithm. We

Table 4 Per cluster data for the ED: Cluster centroids (levels 1, 3, 5, and 8) for the features NC (Number
of Challenge Questions), NE (Number of Explored Set-Ups), and NSE (Number of Strong Explores),
average posttest score per cluster (Posttest), average science grade per cluster (Grade)

NC NE NSE Posttest Grade

1 3 5 8 1 3 5 8 1 3 5 8

3.1 5.1 16.9 23.2 6.0 7.9 13.3 14.1 1.0 1.8 4.6 4.7 3.1 0.89

3.8 5.0 16.2 21.8 7.6 8.4 12.6 13.9 0.7 0.9 2.4 2.4 2.6 0.81

4.2 6.0 12.8 28.3 3.2 3.6 4.3 5.7 0.0 0.0 0.0 0.1 2.3 0.81

3.9 4.4 16.6 71.1 7.3 8.0 11.9 23.2 1.0 1.0 3.3 4.3 2.1 0.82

4.2 5.0 15.6 48.4 4.5 4.6 6.1 8.1 0.8 0.8 1.5 1.8 1.8 0.77

4.6 5.5 13.4 15.0 4.1 4.4 6.0 6.2 0.5 0.6 1.5 1.5 1.7 0.78

4.4 5.5 16.3 89.8 4.1 4.7 5.1 7.5 0.6 0.6 0.8 1.2 1.1 0.77
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then treat the cluster labels as ordinal variables, allowing us to compute correlations.
The posttest score is negatively correlated to the cluster labels (r = −0.35, p <

.001) and the science grade is also negatively correlated to the cluster labels (r =
−0.26, p < .01). These significant correlations indicate that the inquiry behavior
represented in the clusters is indeed predictive for the learning outcome and evidently
for school grades (due to the limited cluster sizes, we were not able to perform pair-
wise statistical tests on the differences between the clusters).

Fig. 6 Typical student for each of the seven clusters. The x-axis denotes the number of challenge attempts.
The left y-axis denotes the level (number of correctly answered challenge questions) and the right y-axis
denotes the number of set-ups tested. The red hatched bars denote the level reached in the actual challenge
attempt. The number of tested set-ups right before entering the challenge mode is indicated by the blue
empty bars. The number of simulated configurations which are categorized as ‘strong’ is displayed with
purple filled bars. Clusters 2 and 5 are not assigned to a learning profile as the reflected behaviors seem to
lie in-between other clusters
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The resulting clusters can be interpreted. Figure 6 illustrates the typical inquiry
behavior for each cluster by showing the trajectory through the game for a pro-
totypical student of each cluster. The selected student sc for each cluster is the
student whose exploration behavior is closest to the centroid: for each clus-
ter c and each cluster member si , we compute the normalized Euclidean dis-
tances dNC,i = ∥∥NCc − NCsi

∥∥2, dNE,i = ∥∥NEc − NEsi

∥∥2, and dNSE,i =∥∥NSEc − NSEsi

∥∥2. We then get the example student for each cluster by calculating
sc = argmini(dNC,i + dNE,i + dNSE,i). In the following, we describe the clusters
found in detail and provide a provisional semantic interpretation.

Cluster 1: Students in this cluster pass the game with about only five attempts in
the Challenge mode. They also show the highest average score in the
posttest as well as the highest average science grade. The prototypical
student from this cluster (see Fig. 6), tests the relations between a large
and a small character (rule R5) as well as position independence in the
initial exploration phase. After having failed the Challenge mode for the
first time, the student systematically tests relations between the different
characters by simulating set-ups using rules R7, R8, and R9 (see student
B in Fig. 3). The only thing not making this student’s inquiry behav-
ior perfect, is, that the student needed to re-test rules R7 and R9 before
finally passing the game. Based on the described learning characteris-
tics, we assign the following label to this cluster: effective learner and
wants to understand.

Cluster 2: Students in this cluster also pass the game fast. As can be seen in Fig. 6,
the example student from cluster 2 is equally fast at passing the game
as the typical student from cluster 1, but simulates less set-ups before
each challenge attempt. However, this student exhibits a less systematic
inquiry behavior demonstrated by the fewer strong set-ups tested. This
cluster cannot be directly assigned to a learner profile as it seems to be
in the middle between clusters 1 and 3.

Cluster 3: This cluster consists of students who manage to learn through presented
examples, i.e., they are able to efficiently gain the necessary knowledge
to pass the game through the Challenge mode. Compared to cluster 1, the
typical student of this cluster simulates less set-ups and is less system-
atic, i.e., none of the tested set-ups of the example student is categorized
as ‘strong’ (see Fig. 6). Based on the learning characteristics listed in
Table 4, we assign this cluster the following label: effective learner but
does not work hard to understand.

Cluster 4: Students in this cluster try hard to understand: they test a lot of different
set-ups and also achieve a high number of strong set-ups. The trajectory
of the sample student (illustrated in Fig. 6) demonstrates that the student
overall tested 16 set-ups and even simulated four set-ups, which are rated
as ‘strong’. We therefore assign this cluster the following label: tries
hard to understand best s/he can.

Cluster 5: The students in this cluster on average need more time to pass the game
than the fast students of the first three clusters. The typical student
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(see Fig. 6 for the trajectory) does test (few) tug-of-war configurations
(mostly exactly one) in-between challenge attempts. A closer look into
the data reveals that the example student does not know how to explore
well. Again, we do not assign this cluster to a learner profile as it lies
between the clusters 3 and 7.

Cluster 6: Similar to cluster 3, students in this cluster do not explore a lot and beat
the game through the Challenge mode. As visible from Fig. 6, the typical
student of cluster 6 only needs two challenge attempts to pass the game
and does not test many different set-ups. The cluster’s average posttest
score of 1.7 demonstrates, however, that most of these students have not
learned the content and probably were lucky at guessing. Therefore, we
label them with the same name as cluster 3: effective learner but does
not work hard to understand.

Cluster 7: The typical student in this cluster needs a long time to pass the
game. Figure 6 reveals that the typical student of this cluster does not
bother with simulating tug-of-war set-ups, but rather tries to pass the
game by using the Challenge mode only. The high number of challenge
questions answered by students in this cluster (NC8 = 89.9) and the
mean posttest score of 1.1 demonstrate that this strategy is neither effi-
cient nor successful. We assign this cluster the following label: only
wants to beat the game.

The cluster solution again confirms that not only students’ choices between Chal-
lenge mode and Explore mode matter, but it is important how they explore. It also
shows that fast learners can (at least in this game) get away with suboptimal learning
strategies.

Cluster Validation

To assess the validity of the obtained clusters, we used the same algorithm as before
to group the np = 147 students (out of n = 152 students) of the VD, who passed
the game. The best BIC score was reached for k = 6 clusters. The cluster centroids
along with the mean posttest score per cluster, the mean cluster science grade, and
the performance in standardized assessments are listed in Table 5. The standardized
assessments used are the SBAC math assessment1 and the SBAC English Language
Arts/Literacy assessment1. Scores for these assessments fall between 2000 and 3000.
A score in the SBAC math assessment bigger than 2652 means that the student
exceeded the standard, scores between 2586 and 2652 denote that the standard was
met. As we can see from Table 5, only students from cluster 6 (only wants to beat
the game) did not meet the standard on average. And students belonging to cluster
1 (effective learner and wants to understand) tend to exceed the standard. For the
SBAC English Language Arts/Literacy assessment students from all clusters met the
standard (scores between 2583 and 2681).

1http://www.caaspp.org/rsc/pdfs/CAASPP.post-test guide.2016-17.pdf
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Table 5 Per cluster data for the VD: Cluster centroids (levels 1, 3, 5, and 8) for features NC (Number of
Challenge Questions), NE (Number of Explored Set-Ups), and NSE (Number of Strong Explores), average
posttest score (Posttest), average science grade (Grade), average scores in the SBAC math assessment
(SBAC Math) and in the SBAC English Language Arts/Literacy assessment (SBAC Lit)

NC NE NSE Posttest Grade SBAC

1 3 5 8 1 3 5 8 1 3 5 8 Math Lit

3.6 4.8 16.7 24.6 5.3 5.8 9.9 10.9 1.7 2.0 4.6 4.9 3.1 0.92 2667 2648

4.0 5.0 15.1 18.5 6.6 7.1 8.7 8.8 1.5 1.7 2.7 2.7 2.7 0.91 2664 2620

4.4 5.2 14.6 20.9 3.6 3.7 4.6 5.0 0.6 0.6 1.2 1.2 2.6 0.89 2645 2648

3.9 6.3 17.5 49.9 8.5 9.1 10.4 12.4 1.5 1.6 2.2 2.4 2.5 0.88 2636 2644

3.5 4.9 17.1 75.7 4.5 4.9 6.8 9.8 1.7 1.8 2.9 3.4 2.2 0.9 2653 2612

3.6 5.2 16.2 85.9 1.9 2.2 2.8 4.2 0.8 0.8 1.1 1.2 1.5 0.85 2576 2640

To quantitatively assess the reproducibility of the original clustering solution
found on the ED, we compute the clustering stability (Lange et al. 2004) between the
new clustering solution found on the VD and the original clustering solution. We use
a k-nearest-neighbor classifier trained on the ED, to assign each sample from the VD
to a cluster c of the ED, resulting in a vector of predicted labels lp. The cluster labels
lVD of the clustering solution found on VD serve as ground truth. The cluster stability
S is then defined as the normalized Hamming distance between lp and lVD. Note that
we are comparing two sets of labels that are not necessarily in correspondence. For
example, the cluster labeled with 1 in the first solution might correspond to the clus-
ter labeled with 3 in the second solution. Therefore, we optimally permute the label
indices of the first solution to maximize the agreement between the two solutions.
The cluster stability S is calculated for the permutation with the minimal Hamming
distance. For our two clustering solutions, we obtain S = 0.18. In other words, the
agreement between the two solutions is 82%. The optimal permutation for the label
indices found on the original clustering solution is popt = {1, 2, 3, 5, 4, 3, 6}.
Cluster 1: Similar to the ED, this cluster consists of students who learn fast and

explore strong set-ups. Students in cluster 1 of the VD generally explored
less (NE8 = 10.9) than the students of the ED (NE8 = 14.1), however,
they had an even more efficient inquiry behavior and therefore tested on
average the same total number of strong set-ups (ED: NSE8 = 4.7, VD:
NSE8 = 4.9).

Cluster 2: This cluster consists of students showing good inquiry behavior, but test-
ing less strong set-ups than students in cluster 1, which corresponds to
the behavior of students in cluster 2 of the ED.

Cluster 3: The optimal permutation popt indicates that cluster 3 of the VD is the
joint version of clusters 3 and 6 of the ED, which consist of students who
quickly pass the game with almost no exploration. This is supported by
the fact that the centroid of the joint version of clusters 3 and 6 of the ED
(NC8 = 19.6, NE8 = 6.0, NSE8 = 1.0) is very close to the centroid of
cluster 3 of the VD (NC8 = 20.9, NE8 = 5.0, NSE8 = 1.2).
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Cluster 4: Students in this cluster need more time to pass the game than the students
in the first three clusters. Similar to students in cluster 3 they try to beat
the game in the Challenge mode. This cluster corresponds to cluster 5 of
the ED.

Cluster 5: This cluster corresponds to cluster 4 from the ED: cluster members need
to answer a lot of challenge questions before passing the game, while
also exploring strong set-ups. However, while students in cluster 5 of the
VD explored an average total number of set-ups (NE8 = 9.8), students
in cluster 4 of the ED tended to extensively simulate different set-ups
(NE8 = 23.2).

Cluster 6: Students in this cluster try to pass the game with repeated attempts in
Challenge mode. They need a long time to pass the game. Cluster 6
corresponds to cluster 7 of the ED.

We again compute the correlations between academic performance by sorting the
cluster labels according to the average posttest scores and treating them as ordinal
variables. Similar to the ED, there is a significant correlation between the science
grade and the cluster label (r = −0.2, p = .036). Furthermore, performance in
the SBAC math assessment is also significantly correlated to the cluster label (r =
−0.26, p < .01). Note that both of these correlations have been computed based on
the optimal permutation of the cluster labels.

While we can find the same types of learners in the VD as in the ED, the share
of the different clusters varies over the two data sets. Figure 7 illustrates the cluster
distributions of the ED and the VD. Note that we use the optimally permuted cluster
labels from the ED for both data sets. The biggest difference lies in cluster 1, which
is the cluster containing the top students. 19% of the students from the VD can be
classified as fast learners, who systematically test the relations between the different
characters. Only 10% of the students of the ED belong to this group. Also the amount
of students trying to pass the game through the Challenge mode with little success,
i.e., needing lots of attempts, is slightly higher for the ED than for the VD (Cluster 7
(ED): 12%, Cluster 7 (VD): 9%). These findings are in line with the fact, that students

Evaluation Data Set
Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

10%

23%

11%
8%

15%

21%

12%

Validation Data Set

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 7

19%

21%

31%

9%

12%

9%

Fig. 7 Distribution of clusters for the ED and the VD. For both data sets, the optimally permuted cluster
labels from the ED are used
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from the VD performed significantly better on the posttest than students from the ED.
Both data sets contain about 30% of students, who manage to pass the game fast
using only the Challenge mode (Cluster 3 + Cluster 6 (ED): 32%, Cluster 3 (VD):
31%). Also the share of students, who try hard to understand (with little success) is
similar for both data sets (Cluster 4 (ED): 8%, Cluster 4 (VD): 9%).

The different shares of students with the optimal learning strategy (i.e., cluster
1) in the two data sets suggests that TugLet along with the clustering algorithm
might be used as a formative assessment for teachers to guide instructional decision-
making.

Discussion & Conclusion

An important goal of education is to ensure that students gain proficient knowledge
of the subject matter, whether it be reading, math, or science. This goal is reflected
in assessments and intelligent computer environments that emphasize student accu-
racy in solving pre-defined problems. A second important goal of education is to
prepare students to continue learning on their own by imbuing them with dispo-
sitions and strategies for learning. Historically, this second goal has been difficult
to assess, other than using surveys. The introduction of highly-interactive computer
environments that log copious amounts of user data present the opportunity to capture
behavioral data relevant to student dispositions and learning strategies. For example,
it has been possible to detect students’ use of critical thinking (Chi et al. 2014), litera-
ture inquiry (Chin et al. 2016), and feedback seeking behavior (Cutumisu et al. 2015).
Moreover, it has become possible to show empirically that some learning strategies
are better for learning than other strategies (Gaševic et al. 2017), whereas before,
claims of strategy benefits were based more on rational analysis than hard data.

In this paper, we have developed a model able to jointly represent student
knowledge and exploration strategies. Our work is comparable to research on
engagement modeling, where student knowledge and engagement are simultaneously
traced (Schultz and Arroyo 2014). FAST (González-Brenes et al. 2014) also allows
for the integration of additional features into a BKT model, however, these additional
features influence prediction of the observed state only. In contrast to this approach,
in our joint model of knowledge and strategy, the strategies directly influence the
(hidden) knowledge state.

Our results demonstrate that even simple probabilistic models of strategies offer
a better representation of learning than a pure performance model. Within the game,
our modeling approach improves prediction accuracy on the original data set ED by
8.3% (RMSEPCM : 0.36, RMSEWSM : 0.33). In comparison, previous research aiming
at improving the prediction accuracy of simple probabilistic models achieved simi-
lar or worse results. Individualized BKT (Yudelson et al. 2013) for example reached
improvements of RMSE of around 1% (e.g., for an algebra data set: RMSEbest =
0.363, RMSEworst = 0.361). Clustered knowledge tracing (Pardos et al. 2012)
achieved similar results with improvements in RMSE again around 1%. While these
improvements might seem small, it has been shown that even small changes in pre-
diction accuracy have an impact on overpractice and underpractice (Yudelson et al.
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2013). For the prediction of the posttest, our combined model of knowledge and
strategy yields substantially larger improvements. Modeling the strength of student
hypotheses improves the posttest prediction accuracy in terms of RMSE by 11.8%
for the ED (RMSEPCM = 0.44, RMSEWSM = 0.39) and by 20.9% for the validation
data set VD (RMSEPCM = 0.43, RMSEWSM = 0.33). This increase in prediction
accuracy demonstrates that including strategies into a model is especially important
when predicting overall student learning from an instructional technology and not
just performance within the environment. The replication of our results on a different
independent data set demonstrates that our findings hold for students from different
academic contexts. The students from the VD significantly outperformed the students
from the ED on the posttest. Despite these performance differences, incorporating the
inquiry strategy found on the ED into the model, improved predictive performance.

Our findings indicate that students’ inquiry behavior indeed influences the learn-
ing outcome.

Furthermore, we have demonstrated that we can group the children into clusters
with similar learning strategies. The clusters found on the ED can be interpreted and
the labels found (effective learner and wants to understand, tries hard to understand
best s/he can, effective learner but does not work hard to understand, only wants to
beat the game) can be communicated to teachers. A limitation of this work is that
we were not able to assign all the clusters to a learning profile. Our identified learner
profiles cover about 2/3 of the children from the ED and the VD. While the rest of
the children cannot directly be assigned to a learner profile, their cluster characteris-
tics can still be semantically interpreted. We validated our clustering solution on the
VD and found a cluster agreement of 82%: we find the same clusters on the VD, only
the distribution of clusters is different. The students of the VD performed better in
the posttest. This fact is reflected in the cluster size of the best cluster: 19% of the
students from the VD can be labeled as effective learner and wants to understand,
while only 10% of the students from the ED belong to this learning profile. Thus,
the algorithm can conceivably help teachers determine how their class as a whole is
performing, relative to other classes. The learning patterns found are not only corre-
lated to students’ posttest scores, they seem to be predictive for students’ academic
achievement in general: the cluster labels are correlated to students’ science grades
as well as their performance in a standardized math assessment. The game together
with the cluster solution can therefore be used as an assessment indicating students’
learning strategies, in our case their inquiry strategies, important for future learning.

We also identified a new (positive) inquiry strategy, which was not described in
the literature before. We categorized simple tug-of-war set-ups t esting exactly one
rule at a time as ‘strong’. We call this new inquiry strategy: keep it simple to isolate
equivalence of units. This strategy is related to the known strategy of CVS (control
of variables). However, there is one key difference, which has proven essential for
learning and this is the simplicity requirement. CVS can be applied also when doing
complex simulations and in this case is not of much help for learning. For example,
a student can include a confusing number of causal contributors that make it difficult
to infer underlying rules, even if (s)he only changes one of the contributors at a time
(e.g., three big, five medium, one small character). While the found strategy might
seem obvious for the presented game, our analysis showed that only a fraction of the
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students used it. Namely the students assigned to the best performing cluster on both
data sets. Therefore, the identified inquiry strategy is able to separate the top students
from the rest. Incorporating this inquiry strategy into a probabilistic model improved
prediction of transfer on two different data sets. The identified inquiry strategy can
generally be considered as good for learning in this environment and we speculate it
is useful in other domains as well. For example, in simulations that ask students to
learn by creating circuits to make bulbs light (etc.,), it may be profitable to isolate
the relation between a battery and a resistor, rather than putting in lots of battery and
resistors to make the lights come on at a specific brightness.

To conclude, in this paper we aimed at using artificial intelligence to pave the way
for eventually augmenting teachers’ abilities to identify students’ learning strategies
in open-ended exploration environments, and conceivably empower the computer to
detect and address learning strategies in these environments. Specifically, we were
interested in answering the following three research questions. 1) Can the computer
help detect learning strategies? 2) Can we determine which learning strategies are
indeed good for learning? 3) Can we characterize them transparently so that a teacher
could conceivably use them as formative assessments?

In both parts of the paper, we have semi-automatically detected strategies leading
to successful learning. In part 1 of the paper, we found that the quality of students’
inquiry is essential, i.e., the quality of tested tug-of-war set-ups (categorized in terms
of strong/weak/medium) is what differentiates high-performing from low-performing
students. In part 2 of the paper, we used unsupervised clustering and determined
the optimal number of clusters in a data-driven way to find groups of students with
similar exploration patterns. Both parts were based on human-engineered features.
We conclude that we can answer research question 1) with yes, at least in the context
of TugLet, but hopefully in other environments as well.

Research question 2) can be confirmed, too. Our analysis using probabilistic mod-
els jointly representing student performance and exploration strategies demonstrated
that including the quality of the tested tug-of-war set-up and hence students’ inquiry
behavior into the model improves prediction of learning outside the game. This find-
ing indicates that it matters not only what we learn, but also how we learn. While this
may seem intuitively obvious, it may be useful to recognize that the behaviorist tra-
dition long held the position that associating a reinforcer with a correct behavior was
the key to learning, not the processes – the how – that led to the correct behavior, and
certainly not a learning process where learner-chosen strategies play a role (Skinner
1986). Indeed, current knowledge tracing models benefit from the behaviorist tradi-
tion by focusing on answer accuracy, whereas student chosen strategies for learning
do not enter those models. These are very powerful traditions, but one of the lim-
itations of these traditions is that they have been poor at predicting or supporting
transfer (Bransford and Schwartz 1999) which is exactly what we have showed here.
The value of representing how students went about learning appeared when students
were asked to solve novel problems that depended a near transfer.

Furthermore, we have also shown that the learning strategies found are corre-
lated to science grades and standardized assessments. A next step is to determine the
best way to have the computer (or teacher) help the students learn effective inquiry
strategies, once the computer detects the strategies they are using.
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For research question 3), we have provided the first step in this paper. Our cluster
solution can be semantically interpreted and has already been validated on a second
data set. As a next step, we plan to further validate the cluster labels by collecting
information about teachers’ teaching beliefs and teaching style as well as their assess-
ment of students’ inquiry behavior. Furthermore, we plan to collect a large-scale data
set from a different cultural context to investigate the cultural (and teaching) differ-
ences of inquiry strategies. The fact that the clustering yielded similar results across
samples of different backgrounds indicates that it may be generally useful in helping
teachers gain insight into their students’ strategies as well as whether these strate-
gies are successful or not. The final goal is to use TugLet as an assessment tool for
teachers, which, in the optimal case, provides them with new information about the
learning behavior of their students.
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