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Contemporary psychological research that studies how people apply mathe- 
matics has largely viewed mathematics as a computational tool for deriving an 
answer. The tacit assumption has been that people first understand a situa- 
tion, and then choose which computations to apply. We examine an altema- 
tive assumption that mathematics can also serve OS a tool that helps one to 
construct an understanding of a situation in the first place. Three studies were 
conducted with 6th-grade children in the context of proportional situations 
because early proportional reasoning is a premier example of where mathe- 
matics may provide new understanding of the world. The children predicted 
whether two differently-sized glasses of orange juice would taste the same 
when they were filled from a single carton of juice made from concentrate and 
water. To examine the relative contributions and interactions of situational and 
mathematical knowledge, we manipulated the formal features of the problem 
display (e.g., diagram vs. photograph) and the numerical complexity (e.g., 
divisibility) of the containers and the ingredient ratios. When the problem was 
presented as a diagram with complex numbers, or “realistically” with easy 
numbers, the children predicted the glasses would taste different because one 
glass had more juice than the other. But, when the problem was presented 
realistically with complex numbers, the children predicted the glasses would 
taste the same on the basis of empirical knowledge (e.g., “Juice can’t change 
by itself”). And finally, when the problem was presented as a diagram with 
easy numbers, the children predicted the glasses would taste the same on the 
basis of proportional relations. These complex interactions illuminate how 
mathematical and empirical knowledge can jointly constrain the construction 
of a new understanding of the world. We propose that mathematics helped in 
the case of successful proportional reasoning because it made a complex 
empirical situation cognitively tractable, and thereby helped the children con- 
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struct mental models of that situation. We sketch one aspect of the mental 
models that are constructed in the domain of quantity-a preference for spec- 
ificity-that helps explain the current findings. 

Mathematics plays a central role in modem science. It provides leverage for understanding 

the material world and for making predictions about worlds that have yet to be experi- 

enced. It is an age-old question why mathematics, a self-contained symbolic system, has 

such powerful empirical extension (Davies, 1992). The Pythagoreans, for example, pro- 

posed that the world and knowledge are governed by the same mathematical relations. 

Consequently, the fit between mathematics and the world of experience is assured 

(Changeux & Connes, 1995). More recently, psychologists have gathered evidence and 

developed theories that explore the relationship between mathematics and empirical expe- 

rience. Case and Okamoto (1996), for example, propose that the integration of core empir- 

ical and numerical conceptual structures explains many developmental findings. More 

generally, a common research approach, relevant to the fit between mathematics and the 

empirical, is to explore the innate and experiential bases of quantitative understanding. 

Some researchers have documented early mathematical competencies such as enumera- 

tion. (e.g., Gelman & Brenneman, 1994; Wynn, 1992). This early appearance could sug- 

gest that mathematics provides leverage on empirical phenomena because people 

necessarily view the world through a cognitive filter of mathematical structure (e.g., an 

innate “accumulator,” Meek & Church, 1983). Alternatively, others who are more inter- 

ested in the development of formal quantitative skills have explored how mathematical 

knowledge evolves through social, symbolic, or physical interactions (e.g., Ben-Zeev, 

1995; Cobb, Yakel, & Wood, 1992; Moore, 1993). This could suggest that mathematical 

knowledge maps onto the world because the structure of understanding is induced or con- 

structed from an inherently “mathematical” environment (cf. Putnam, Lampert, & Peter- 

son, 1990). 

An alternative approach, distinct from tracing the developmental trajectory of quantita- 

tive knowledge, is to examine how people’s problem solving incorporates properties of 

empirical and mathematical worlds. One might manipulate people’s use of mathematical 

knowledge, empirical knowledge, or a combination of the two for a single situation (e.g., 

Ahl, Moore, & Dixon, 1992; Bassok & Holyoak, 1989; Heller, Post, Behr, & Lesh, 1990). 

In this way, one may examine the interaction of empirical and mathematical knowledge, 

and perhaps, make inferences about the mental structures that allow this interaction. This 

is the approach taken here. We present 6th-grade children on the cusp of formal reasoning 

with a problem that may be solved either on the basis of everyday experience or on the 

basis of proportional relations. By changing features of the problem, we invite children to 

reason based on empirical experience, or a combination of mathematics and empirical 

experience. We use the studies to support the proposal that mathematics provides leverage 

on the material world because it is used as a tool that makes a complex situation cognitively 

tractable, and thereby helps people construct mental models of that situation. 



I. TWO VIEWS ON THE ROLE OF MATHEMATICS 

To a large extent, contemporary research concerning how people apply mathematics to sit- 

uations has viewed mathematics primarily as a computational tool for deriving an answer. 

The common premise has been that people first understand the structure of a situation, and 

then choose which computational approach to apply. At the risk of over generalization, it 

seems safe to say that most investigations of mathematics application adopt what we will 

call the EQM frame: 

Empirical Situation ---t Qualitative Schema ---> Mathematical Procedure 

According to EQM, people ideally interpret an empirical situation with a qualitative 

schema, and the schema in turn determines the numerical procedures they apply. We use 

qualitative schema as a convenient label for many different proposals. It can stand for the 

“intuitive” understanding of the ordinal or interval quantities of a situation (e.g., cold, 

warm, hot; Ahl, Moore, & Dixon, 1992), the representation of an empirical transformation 

and its effect (e.g., reshaping clay, Siegler, 1981), or even a more abstract and general rep- 

resentation like a part-whole schema (e.g., Resnick, 1992; Kintsch & Greeno, 1985). 

Despite the real differences between these meanings of qualitative, most research adopts 

the EQM frame in which mathematics comes after qualitative understanding. 

In the developmental literature, for example, Inhelder and Piaget (1958) argued that 

children come to understand proportions through qualitative pathways rather than mathe- 

matical ones. They observed that “the subject first wants to isolate the [empirical] conser- 

vation for the same result... so that he can find the proportions, whereas he could have 

started from the operant relationships and their proportions in order to come to the idea of 

a potential compensation [i.e., empirical conservation]” (p. 220). 

In the educational literature, there are powerful reasons to emphasize qualitative situa- 

tional knowledge as a way to anchor the learning of mathematical knowledge (e.g., Cogni- 

tion and Technology Group at Vanderbilt, 1997; Greeno, 1989). Many authors, for 

example, propose that students should activate “real-world’ knowledge of a situation, so 

they will learn and use mathematics appropriately (e.g., Baranes, Perry, & Stigler, 1989; 

Hardiman, Wells, & Pollastek, 1984; Karplus, 1981). Supporting this idea, Ahl, Moore, 

and Dixon (1992) showed that reasoning about a qualitative version of a temperature mix- 

ing task (e.g., combining hot and cold water) improved performance on a subsequent 

numerical version of the task, but not vice versa. They subsequently claimed that “intuitive 

understanding sets an upper bound for generating [mathematical] solutions in novel or 

uninstructed domains.. .” (Dixon & Moore, 1996, p. 252). 

Much of the adult problem-solving literature also adopts the EQM frame. This research 

often emphasizes the retrieval and similarity-finding processes that determine how individ- 

uals “choose” which schema or computations to apply to a given instance. One research 

line, for example, has investigated whether particular computational procedures are cued 

by particular semantic types (e.g., Hinsley, Hayes, & Simon, 1977). Bassok and Olseth 

(1995), for example, showed that people did not apply a formula to a discrete and continu- 

ous context with the same frequency even those contexts were mathematically isomorphic 

(e.g., ice delivery rate vs. ice melting rate). Another approach has shown that surface cues 
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like the expression “all together” can cause people to retrieve specific computational meth- 

ods such as addition-ften times incorrectly when they have not evoked a mediating qual- 

itative representation (Cummins, Kintsch, Reusser, & Weimer, 1988; Ross, 1989; Silver, 

1986). Yet another approach has looked at analogical processes to explain how people find 

the structural correspondences between a novel and known situation (Novick, 1988; Reed, 

1993). Greeno, Smith, and Moore (1993) summarize the standard view of analogical trans- 

fer: “In problems involving use of a formula, we suppose that the mental representation 

would include a symbolic [qualitative] schema that represents the pattern of quantitative 

information in the initial learning problems, along with a representation of the formula.. . . 

Transfer will occur if the pattern of quantities in the transfer problem is recognized accord- 

ing to the same schema that was used in initial learning” (p. 143). Notice that the qualita- 

tive schema does the work in understanding the new situation, not the mathematical 

formula. 

Inherent to the EQM frame is the assumption that mathematics does not help explain the 

material world. If anything, qualitative understanding of the world helps explain mathe- 

matics, as in the case of using physical manipulatives to teach mathematics. We would like 

to propose, however, that mathematics does play a role in explaining the material world 

and that people do sometimes use their mathematical knowledge to help mediate powerful 

empirical insights (Flavell, 1972). Siegler (1981), for example, observed that in the domain 

of conservation, “Children seem to use their knowledge about the effects of transfotma- 

tions on number to learn about the transformations’ effects on liquid and solid quantities” 

(p. 62). With respect to education, physicist Richard Feynman (1965) stated, “... it is 

impossible to explain honestly the beauties of the laws of nature in a way that people can 

feel, without their having some deep understanding in mathematics. I am sorry but this 

seems to be the case” (p. 39). And in the arena of problem solving, Sherin (1996) indicated 

an influence of mathematics by showing that algebra leads to an understanding of physics 

based on balance and equilibrium, whereas programming languages lead to a physics of 

process and causation. 

One demonstration of how mathematics can shape situational understanding is that it 

can influence the empirical features that one considers. Imagine, for example, that people 

are deciding between the purchase of three- and four-legged stools (aesthetics aside). 

Because people have strong mathematical knowledge about additive relationships, they 

might model the situation emphasizing that four legs are greater than three legs. Conse- 

quently, they might decide that the extra leg makes a sturdier stool. Topologists, however, 

might model a stool in terms of the shape made by the legs. Three legs make a triangle, four 

legs make a square. Given this encoding, the topologists might infer that a three-legged 

stool is preferable because a triangle always makes a plane; it is never necessary to put a 

folded napkin under one leg to make the stool rest evenly on the floor. 

In the stool example, mathematical and empirical knowledge interact to support infer- 

ences. We propose that this interaction often develops through the “on-line” construction 

of a mental model that captures the readily modeled information. In a domain that does not 

involve quantitative information, for example, Vosniadou and Brewer (1993) demon- 

strated how children capitalize on available information like overheard facts and percep- 
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tions to construct a coherent, albeit idiosyncratic, mental model of the earth. We suggest 

that in quantitative domains people also capitalize on quantitative information, to the 

extent allowed by their mathematical tools, to create coherent models in working memory. 

Of course, we cannot claim that this always occurs (e.g., Gelman, 1982; Hegarty, Mayer, 

& Monk, 1995; Roazzi & Bryant, 1993). Rather, this is how mathematical knowledge pro- 

vides initial leverage for understanding the world. It helps identify and align relationships 

that make it possible to pull together different pieces of information into a tractable prob- 

lem representation. We investigate this claim in the context of proportional reasoning. 

II. REASONING ABOUT PROPORTIONAL SITUATIONS 

The study of proportional reasoning and the related domain of rational number has pro- 

duced a great variety of experimental tasks and factors, as well as categorizations of differ- 

ent types of rational numbers, solution strategies, elements of understanding, methods of 

instruction and developmental sequences (e.g., Carpenter, Fennema, & Romberg, 1993). 

Stated simply, a proportion is an equality between two ratios. Rather abstract questions 

involving proportions include determining whether 2/3 equals 4/6, finding the missing 

value x in the problem x/3 = 4/6, and determining whether the fraction 2/3 will necessarily 

become greater with an increase in the numerator, or denominator, or both. Proportions are 

difficult, in part, because of the need to consider a number of relations jointly in working 

memory (Case, 1978; Halford, Wilson, & Phillips, in press). For example, comparing 2/3 

and l/3 is relatively easy because one can “get away with’ only considering the relation- 

ship between the numerators. Children as young as five can solve this sort of problem. But, 

they would fail on a problem comparing 2/5 and l/2. Comparing 2/5 and l/2 is more diffi- 

cult because one needs to take the denominators into explicit consideration as well. There 

are different methods for handling the multiple possible relationships in 2/5 and l/2, 

including cross-multiplying, re-computing the fractions so they have equivalent denomina- 

tors or numerators, or converting the within-fraction relationship into a single construct 

(e.g., a percent) which in turn reduces the between-fraction comparison to a single, more 

manageable relationship. 

To further complicate matters, when proportions are placed in an empirical context, 

people not only need to consider at least four distinct quantities and their potential relation- 

ships, they also need to decide which quantitative relationships are relevant. Cramer, Post, 

and Currier (1993), for example, report that a high percentage of adults incorrectly applied 

proportional reasoning to the following problem: “Sue and Julie were running equally fast 

around a track. Sue started first. When she had run 9 laps, Julie had mn 3 laps. When Julie 

completed 15 laps, how many laps had Sue run ?’ (p. 159). This problem does not require 

proportional reasoning because Sue and Julie were running at the same speed; when Julie 

had reached 15 laps by running 12 more laps, Sue had also run 12 more laps making her 

total 21. As another example, consider mixing 1 oz. of orange concentrate and 2 oz. of 

water as compared to mixing 2 oz. concentrate and 4 oz. water. If the question is which 

mixture will taste stronger, people should compare ratios to determine that they are equiv- 

alent. But, if the question is which one will make more, then the appropriate quantitative 
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relationship shows that they are not “equivalent.” This is part of the challenge of connect- 

ing mathematics and the world: not only do people often need to coordinate numerous 

quantitative relationships, they also need to decide which mathematics is appropriate for 

which relationships. In many cases, people’s qualitative knowledge determines which 

mathematical operations they should apply. But, as we will show, in some cases, mathe- 

matics helps people decide which empirical relationships are important. It does this by 

making it possible for people to model, and thereby understand, the possible relationships. 

In the current experiments, we ask children to decide whether large and small glasses 

that have the same ratios of orange concentrate and water will taste the same (cf. Noelting, 

1980a, 1980b). We use a proportion problem for two main reasons. First, the development 

of proportional reasoning represents a case where the successful use of mathematics can 

provide a gateway for understanding the empirical world in new and powerful ways. By 

investigating children who are on the cusp of proportional reasoning, we can evaluate the 

interaction between mathematical and empirical knowledge. Children’s facility with pro- 

portional reasoning should not be very great, nor should their knowledge of juice mixtures. 

Therefore we may examine whether, and under what conditions, they manage to combine 

limited mathematical and empirical preparedness to come to a new understanding. 

The second reason for focusing on a proportion task is primarily theoretical. Previous 

descriptions of mental models in the domain of mathematical understanding have tended to 

be analog representations of perceivable systems such as linearly ordered actions (Case dz 

Okamoto, 1996), spatial arrays (Huttenlocher, Jordan, & Levine, 1994), or physical 

devices (Hatano & Osawa, 1983). If all mental models were to depend on perceptual ana- 

logs, it would limit their range of application considerably. Consider, for example, compar- 

ing the hues of two containers of pink paint that have been made from quantities of red and 

white paint. Although people can compare the pink hues perceptually, this does not mean 

they are reasoning about proportional relations (Lesh, Post, & Behr, 1988). To reason pro- 

portionally, people must separate the red and white visual components. This, however, 

removes the visible quality of interest; namely pink. If mental models must be analogs of 

perception, we suspect that the challenge of imagining “a relation of relations” (Piaget, 

Grize, Szeminska, & Bang, 1977) in the form of two pinks, two whites, and two reds would 

be prohibitively high. More generally, being able to model a higher-order equivalence 

through perception (e.g., speed) may not provide sufficient constraint to support the dis- 

covery of a structure that can explain that equivalence (e.g., distance over time). Although 

knowing the correct answer certainly helps, the backward mapping from answer to expla- 

nation may be quite difficult when the explanatory elements are not differentiated and 

articulated in one’s knowledge of the answer (e.g., Karmiloff-Smith, 1979). Thus, it is 

important to investigate whether it is possible to describe characteristics of mental models 

that are not dependent on perceptual analogs and that can include structures that could sup- 

port proportional reasoning. 

Traditionally, the proportional reasoning tasks that have been used to investigate chil- 

dren’s conceptual development require the consideration of quantities to achieve a correct 

answer. The quantitaties can be numerical and require the use of a ratio scale. Or, the rela- 

tionships can be “qualitative” and require the use of ordinal and/or interval scales (e.g., 
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small and large containers; Dixon & Moore, 1996; Heller et al., 1990; Spinillo & Bryant, 

1991). A small change to this traditional problem characteristic may help illuminate the 

relationship between mathematical and empirical knowledge. Imagine a carton of orange 

juice made from 40 oz. of water and 24 oz. of concentrate. Also imagine a 4 oz. and a 7 oz. 

glass filled from the carton. Will the two glasses of orange juice taste the same? This sce- 

nario has two primary solution paths. The first is to rely solely on prior empirical experi- 

ence: the juice in the glasses comes from the same carton, so it should taste the same. The 

second is to rely on a combination of experience and mathematics: the ingredient ratio is 

invariant across the containers and ingredient ratio determines flavor. For an adult, the 

empirical solution is obvious, and the mathematical solution explains the empirical results 

perfectly. For a child, neither solution may be obvious. Harel, Behr, Lesh, and Post (1994), 

who devised this task, found that many children predicted that the larger glass would taste 

stronger because it has more juice. 

Although it seems odd that children would reason about the quantities of juice when the 

experiential answer should be so easily retrieved, it is a mistake to presume that the chil- 

dren were temporarily tricked into thinking that the larger glass would taste stronger. Weak 

experiential knowledge does not always assert itself, especially when constructing an 

explanation (Schooler & Engstler-Schooler, 1990; Schwartz & Hegarty, 1996). To help 

demonstrate that mathematical knowledge can influence the experiential knowledge peo- 

ple use, we conducted a pilot study using a problem more suited to adults: There are three 

light switches in one room and three light bulbs in another room. Each switch controls one 

and only one bulb. When a switch is up, its corresponding light bulb is on. Assume that 

there is no way to see between the rooms without taking a trip. How many trips between the 

rooms will be necessary to map the switches to their respective light bulbs? Of the 20 peo- 

ple asked, 19 decided that it would take 2 round trips. Telling the adults that, in fact, it only 

takes one trip did not help. The adults had turned the problem into a binary search. Their 

binary model had the effect of influencing which empirical features the adults brought to 

bear on the problem. So, paralleling the case of the children who could not “recall” the rel- 

evant fact that juice quantity has no effect on taste, the adults could not “recall” the relevant 

fact that a light bulb generates heat. To solve the problem in one trip, one can turn on 

switch A for a few minutes, turn switch A off, turn on switch B, and then go to the light 

bulb room. The lit bulb is connected to switch B, the warm bulb is connected to A, and the 

remaining bulb is connected to C. In terms of the current proposal, for both the orange juice 

and light bulb problems, people use their mathematical tools with the available quantitative 

information to help construct a model of a particular structure. Once constructed, the model 

shapes the inferences they can draw, right or wrong. 

In the orange juice task, children, in their efforts to accommodate the numerical infor- 

mation, may model that one glass has more than the other. At the same time, in their efforts 

to accommodate the experiential properties, the children may model the juice as it is expe- 

rienced. As experienced, juice is a unitary entity rather than an entity composed of concen- 

trate and water. As a consequence, their models would include a manifest inequality 

between the quantities of juice in each glass and no structures for inferring an equality. 

This is because their models would not include the necessary information for constructing 
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a ratio; they omitted the relationship between the separate ingredients. As a result, they 

might infer that different amounts of juice lead to different amounts of taste, much like dif- 
ferent amounts of clay lead to different weights. In some cases, mathematics, such as sub- 

traction, helps people model the world successfully, and in some cases it leads to models 

that, upon subsequent testing, turn out to be inadequate. 

III. EXPERIMENTAL FACTORS 

For children in the 6th grade, neither the correct empirical nor proportional solution path is 
so obvious that they will use it exclusively (Hare1 et al., 1994). Instead, it should be possi- 

ble to manipulate children’s use of empirical and mathematical knowledge. To do this in 

these experiments, we manipulated two dimensions of the juice scenario: physical realism 

and quantitative complexity. Figure 1 provides two examples of combinations of these 
dimensions. 

Physicality 

Prior research in both imagery and mathematical reasoning has shown that the physicality 
or photo-realism of a problem display can influence the models people construct. Realistic 

presentations often lead to simulations of empirical experience, whereas diagrams lead to 

analytic comparisons of static quantities. Schwartz (1995; Schwartz & Black, 1996a), for 

example, asked adults to determine whether marks on hinges and gears would meet if the 

mechanisms were put in motion. When the display of the mechanisms was photo-realistic, 

people imagined the dynamics of the devices closing or rotating into position. In contrast, 
when the display of the mechanisms was a diagram, people did not imagine the movement 

of the systems. Instead, they extracted the metric properties of the display (e.g., distances 

and angles) which they then compared or used in thumbnail derivations. Similarly, in the 
domain of mathematical reasoning, Moore (1993) presented children with pairs of actual 

winches or computerized diagrams of winches. Their task was to determine the relative 
behavior of blocks attached to the end of each winch. Moore found that children reasoned 
numerically earlier and more frequently with the diagrams than with the actual winches. 

Given these results, we thought a realistic presentation of the juice scenario might lead stu- 
dents towards a “hotter,” more experiential perspective (cf. Mischel, Shoda, & Rodriguez, 

1989). They might think of juice as a single flavorful entity. In contrast, a diagram might 

invite a “cooler,” more analytic perspective. The children might emphasize quantitatively 
analyzable relationships. 

Quantities 

In addition to physical realism, we manipulated the problem quantities. There were non- 
numerical versions, versions with easily divided numbers, and versions with numbers that 
were more difficult to divide. Non-numerical versions of the problem stated that one glass 
was large and the other small. Because this information underspecifies the quantities, we 
thought that children would not be inclined to model the quantitative properties of the prob- 
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Figure 1. Two Examples of the Orange Juice Scenario Seen by the Children 
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lem. Numerical versions, on the other hand, do provide specific quantities. This may help 

children construct models that include quantitative information (cf. Greeno, 1991). As an 

analogy from a spatial domain, people are more likely to model “Mike is to the Ze@ ofBob,” 

than “Mike is lte_xt to Bob,” because the former specifies the nature of the spatial relation- 

ship (Mani & Johnson-Laud, 1981). The complexity of the specific numerical relation- 

ships afforded by the “easy” and “hard” problem versions may also affect model 

construction (Love11 & Butterworth, 1966; Lunzer & Pumfrey, 1966). Several researchers 

have documented that the numerical structure of a proportion problem influences perfor- 

mance (Hart, 1981; Karplus, Pulos, & Stage, 1983; Noelting, 1980b). So, for example, a 

carton with 20 oz. of concentrate and 20 oz. of water may afford a model of a one-to-one 

relationship between the two ingredients. In contrast, a carton with 24 oz. of concentrate 

and 40 oz. of water may not suggest an easily modeled relationship between the ingredi- 

ents. Consequently, children may not construct a model that includes a structure that can 

capture the relationship between the ingredients. 

IV. EXPERIMENT 1 

In the first study, students in the 6th grade attempted the orange juice problem in one of 

four conditions. The conditions resulted from crossing the factors of display format and 

quantities. The children saw either a physical or diagram version of the juice problem pre- 

sented at the front of a classroom, and the problem either indicated numerical or non- 

numerical quantities. The top of Figure 1 shows a photograph of the physical display that 

was used in the physical-numerical condition, and the bottom of Figure 1 shows the dia- 

gram used for the diagram-non-numerical condition. In each condition, the students’ task 

was to decide whether the two glasses of juice tasted the same or different and to explain 

why. 

Our primary interest was whether these non-structural problem variations would influ- 

ence student understanding. One hypothesis was that the increased perceptual information 

of a physical display, relative to a diagram, would invite students to think about the prob- 

lem experientially (e.g., “the juice comes from the same carton”). A second hypothesis was 

that the increased quantitative information of a numerical display, relative to a non-numer- 

ical display, would invite students to model a quantitative structure for the problem (e.g., 

“one glass is larger than the other”). We did not have a priori predictions for what would 

happen when cues to experiential and quantitative understanding were crossed, as in the 

cases of the physical display with numbers and the diagram display without numbers. This 

is the mixing ground of empirical and mathematical knowledge that we were exploring. 

Method 

Participants 

The participants were ninety-eight students comprising four mathematics classrooms at an 

urban elementary school. The students were in the first 10 weeks of the 6th grade. For the 
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experiment, the students left their original classrooms and were randomly mixed with one 

another. 

Design and Materials 

A 2 x 2 between-subjects design crossed the factors offormat and quantities. The physical 
format used a carton of orange juice, two glasses, and three placards. The placards were 

placed next to the carton and glasses to indicate the relevant quantities. The diagram for- 

mat used a poster board that showed line drawings of the containers and their quantities. 

The numerical quantities indicated that the carton of juice was composed of 40 oz. of water 

and 24 oz. of orange concentrate, and that the glasses were 7 oz. and 4 oz. The non-numer- 
ical quantities indicated that the carton had water and orange concentrate, and that one 

glass was larger and the other glass smaller. There were two dependent measures; the stu- 

dents’ judgments about taste equality and their explanations. Students in all conditions 

received a form that asked, “Would the large glass taste the same as the small glass? If they 

would not taste the same, which one would taste more orangy?” The students circled their 

response. The bottom of the worksheet asked students to explain their answers. 

Procedure 

The students within each classroom were randomly reassigned to four new classrooms cor- 

responding to the four conditions. Each room (condition) had a separate experimenter who 

read a script describing the problem setup. For the numerical conditions the script was, “A 

carton of orange juice was made from 40 oz. of water and 24 oz. of orange concentrate. A 

7 oz. glass has juice from the carton, and a 4 oz. glass has juice from the carton.” For the 

non-numerical conditions the script was, “A carton of orange juice was made from water 

and orange concentrate. A large glass has juice from the carton, and a small glass has juice 

from the carton.” In the physical conditions the experimenters held up the placards as the 

corresponding information was spoken. In the diagram conditions the experimenters 

pointed to the information on the poster. In the physical conditions the experimenters 

poured the juice from the carton into the glasses as they noted each glass. After the exper- 

imenters completed their brief scripts they passed out the response forms. The forms were 

collected student by student as they were completed. 

Results 

Accuracy by Condition 

A circled response was correct if it indicated that the glasses would taste the same, or if it 

indicated different taste with an explanation that relied on the carton of juice not having 

been shaken. Figure 2 indicates that over 50% of the students gave the correct answer in the 

physical display conditions regardless of quantitative information. In the diagram condi- 

tions, students only achieved this level of accuracy when there were non-numerical quan- 

tities. A logistic analysis crossed the factors of format and quantities with accuracy as the 

dependent measure (correct versus incorrect) . A main effect of quantities indicates that the 
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Figure 2. Percent Correct Responses by Condition (Exp. 1) 

numerical versions led to poorer accuracy than non-numerical versions; 2 = 2.33, SE = 

.104, p < .05. There was no main effect of format; Z = .72, p > .45; however, a marginal 

quantities by format interaction indicates that the numbers had less of an effect with the 

physical presentation than with the diagram presentation; Z = 1.85, p c .07. 

Types of Explanations 

We identified the explanations shown in plain type in Table 1. In this and the following 

experiments, a primary coder categorized each student’s explanation. A second individual 

coded a random, one-fifth sample and made 93% identical codings (91% and 94% for 

Experiments 2 and 3, respectively). The primary coder’s categorizations were used for 

analyses. The first column of Table 1 provides the distribution of explanations for Experi- 

ment 1. 

For a representation to support proportional reasoning about this situation, it must rep- 

resent the separate ingredients and their quantities. Upon review, we decided that student 

explanations could be factored according to whether they were f&antzjX and whether the 

concentrate and water were Partitioned into separate ingredients. There were four main 

categories of explanations: Quantified and Partitioned (QP), Quantified and Non-Parti- 

tioned (Q-P), Non-Quantified and Partitioned (-QP), and Non-Quantified and Non-Parti- 

tioned (-Q-P). (There was also a fifth category for Non-Explanations.) The explanations 

in Table 1 are organized by these factors and then further separated into same- and differ- 

ent-taste explanations. 
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TABLE 1 
Explanation Frequencies Broken Out by Quantification (Q) and Partitioning (P) 

for the Three gxperfments 

Percent of Explanations 

Exp 1 Exp2 Exp 3 

QP Models 

Articulate Proportional 
Same Relative Numerical Amounts of ingredients . . . . . . . . . . . . . . . . . . . . . 
Proto-Propotiional 
Same Relative Amounts of Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Same Numerical Amounts of Ingredients as Carton . . . . . . . . . . . . . . . . . . . 
Same Amount of Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Same-Taste Totals 

0.0 4.0 5.6 

0.0 5.3 3.4 
0.0 2.7 0.0 
0.0 5.3 5.6 
0.0 17.3 14.6 

Two Ingredients without Ratio 
Bigger Glass has more Water and Concentrate . . . . . . . . . . . . . . . . . . . . . . . . . 
Smaller Glass has less Water and Concentrate . . . . . . . . . . . . . . . . . . . . . . . . . . 
Glasses have different Amounts of Water ond Concentrate . . . . . . . 
A Glass has more(less) Concentrate and less(more) Water......... 
Centrate on One Ingredient 
Bigger Glass has more Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Bigger Glass has more Concentrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Bigger Glass has less Concentrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Smaller Glass has less Woter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Smaller Glass has less Concentrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Different-Taste Totals 
Q-P Models 

Quantity Irrelevant 

0.0 4.0 5.6 
0.0 2.7 2.2 
0.0 5.3 2.2 
4.1 4.0 0.0 

3.1 
2.0 
1 .o 
1 .o 
1 .o 

12.2 

Amount of Juice does not Affect Taste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 
Same-Taste Totals 9.2 

Quantity = Quality 
Larger Glass has more Juice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Less Juice means more Flavor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Different Sizes = Different Taste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Different-Taste Totals 
-QP Models 

29.6 
2.0 
0.0 

31.6 

Constituent Identity 
Same Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Same-Taste Totals 
Unequal Mixing 
Not Shaken, First Glass gets Pulp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Different-Taste Totals 
-Q-P Models 

Causal/Temporal 
Common Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Whole Identity 
Orange Juice is Orange Juice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Same-Taste Totals 
Different-Taste Totals 

Non-Rxplanations 
Reossertion of Answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
No Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Uninterpretable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Non-Explanation Totals 

6.1 
6.1 

4.1 
4.1 

13.3 

17.3 
30.6 

0.0 

3.0 
1 .o 
2.0 
6.0 

0.0 
4.0 
0.0 
0.0 
0.0 

20.0 

30.7 
30.7 

1.3 
0.0 
0.0 
1.3 

5.3 
5.3 

5.3 
5.3 

10.7 

9.3 
20.0 

0.0 

1.3 
0.0 
0.0 
1.3 

2.2 
2.2 
0.0 
0.0 
0.0 

14.6 

12.4 
12.4 

10.1 
0.0 
1.1 

11.2 

2.2 
2.2 

1.1 
1.1 

21.3 

9.0 
30.3 

0.0 

7.9 
2.2 
3.4 

13.5 
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The top entries of Table 1 show QP explanations. A QP explanation of the orange juice 

task is a necessary, but insufficient, condition for indicating proportional reasoning; stu- 

dents also need to consider the relationship between the constituents within each glass to 

support a proportional inference. In Experiment 1 there were no proportional or same-taste 

QP explanations, and we defer discussion of these explanations until Experiment 2. There 

were two main types of different-taste explanations. Two Ingredients without Ratio: Stu- 

dents explicitly compared the constituent quantities across glasses but did not consider the 

constituent relationships within a glass. For example, one student wrote that the larger 

glass would taste stronger because, “The larger glass has more concentrate and water.” 

Another student explained, “The 7 oz. would taste more orangy than 4 oz. because it would 

have more orange concentrate than the 4 oz. and the 4 oz. would have more water than the 

7 oz.” Centration on One Ingredient: One ingredient was compared between glasses. One 

student wrote, “There is more space in the 7 oz. so there could be more room for water.” 

This is a Q explanation because the student considered the amount of water. It is also a P 

explanation because the student identified the separability of the constituents, although he 

subsequently only focused on one of the constituents. 

The Q-P explanations led to same- and different-taste responses. Quantity Irrelevant: 

Students made explicit statements that the quantity of juice is irrelevant to determining the 

taste. For example, “It will taste the same because orange juice is orange juice no matter 

how big the cup is.” In this case, the student acknowledged the different quantities in each 

glass, but did not consider the ingredients. Quantity=Quality: Students reasoned additively 

that an increase in the measure of a quantity yields an increase in an associated quality, 

much as an increase in the quantity of clay yields more weight (Hare1 et al., 1994). For 

example, one student wrote that the large glass would taste stronger, “because there’s more 

orange juice in the large glass.” A possible interpretation of the Quantity=Quality mistake 

is that students were thinking “longer lasting taste” rather than “stronger orange flavor.” 

Consequently, more juice would lead to more orange taste. Debriefing did not support this 

possibility, and Experiment 3 formally rejects this interpretation. 

The -QP explanations led to same- and different-taste responses. Constituent Identity: 

Students acknowledged the separable constituents within the glasses but made no reference 

to quantity. For example, “The glasses have the same ingredients.” Although it is possible 

that this student was thinking that the glasses have the same quantities or ratios of ingredi- 

ents, this would be a far inference based on what was written. Unequal Mixing: Students 

who gave different-taste responses relied on the physical properties of the orange juice 

mixture. One student reasoned, “probably most of the pulp was not at the top of the carton,” 

hence the first glass filled would get less pulp. In this explanation, pouring and carton shak- 

ing play a causal role in determining the quality of oranginess, while at the same time the 

constituent of orange pulp is distinguished. Although this student thought in terms of the 

amount of pulp, we do not consider this a Q explanation because it does not quantify the 

concentrate or water. 

The -Q-P explanations always pointed to same-taste responses. Causamemporal: Stu- 

dents noted that the two glasses of juice came from the same carton, and there was no rea- 

son to suspect a change. As one student wrote, “They both have the same orange juice and 
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they can’t change by themselves.” Whole Identity: Students reasoned that both glasses have 

the same kind of orange juice, focusing on the identity, rather than causal, relationship 

between the three quantities of orange juice. As one student wrote, “Orange juice is orange 

juice and it will taste the same.” Using either of these models, students have not made a 

quantitative comparison, but instead they have reasoned about the physical properties of 

the situation. 

The Relationships between Explanation Type, Accuracy, and Condition 

We next consider whether the students’ use of quantification and partitioning helps explain 

the circled taste responses and the condition effects. Although the same-different responses 

preceded the students’ explanations, the explanations tended to reflect the responses. In 

several cases, however, students who gave same-taste responses wrote QP explanations 

that stated why the juice would taste different. These mismatches were infrequent and do 

not bias the analyses. 

Table 2 indicates the percentage of correct responses associated with the four explana- 

tion types. The marginals show that Q explanations were associated with different-taste 

responses. Students with QP models were accurate only 8% of the time, and students with 

Q-P models were accurate only 27% of the time. In contrast, students who considered nei- 

ther the quantities nor the separate ingredients (-Q-P) were accurate 100% of the time. A 

logistic analysis statistically tested the relationship between explanation type and solution 

accuracy. Quantification and partitioning were crossed factors with accuracy as the depen- 

dent measure. Quantifying the problem led to significantly poorer performance; Z = 4.68, 

SE = .24, p < .Ol. Partitioning the problem led to marginally poorer performance, Z = 1.73, 

p < .09. There was no interaction of partitioning and quantification; Z = .63, p > .5. In sum, 

students who made the correct response were not doing so on the basis of proportional rea- 

soning. In fact, those students who considered properties that could have entered into pro- 

portional relations were the least accurate, whereas the students who did not consider those 

properties were the most accurate. 

The relationship between the quantified explanations and the incorrect responses helps 

explain the poor performance in the diagram-numerical condition. It appears that the dia- 

gram-numerical condition caused the greatest inaccuracy because the students most fre- 

quently reasoned quantitatively in that condition. The frequencies in Table 2 indicate that 

the diagram-numerical condition led to the most Q explanations (74%) and the fewest 

-Q-P explanations (17%). A logistic analysis formally shows that the format and quantity 

factors influenced the use of Q and P explanations. The two numerical conditions led to 

more quantified explanations; Z = 2.08, SE = .14, p < .05. A marginal format by quantities 

interaction shows that the numbers led to more quantified explanations in the diagram con- 

dition than the physical condition; Z = 1.95, p c .06, all other effects, p > .3. 

Discussion 

Even though the basic orange juice problem did not change across conditions, the children 

exhibited systematically different understandings. This indicates that qualitative domain 
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knowledge is not solely responsible for how the children came to understand the problem. 

In particular, the numbers affected the students’ understanding of the problem for the dia- 

gram format but not the physical format. Students in the diagram-numerical condition 

tended to state that the juice in the two glasses would taste different, whereas students in 

the other three cells of the design did not. A second finding is that the students did not 

appear to have a proportional understanding of the problem. There were no cases where a 

student provided a same-taste explanation based on a quantitative equivalence between the 

two glasses (i.e., equal ratios). Because many of the children did write quantified explana- 

tions, it seems unlikely that the children had a proportional understanding but just preferred 

not to bother with quantitative explanations. Our following explanation of these two find- 
ings emphasizes whether and how the children tried to bring together empirical and math- 

ematical knowledge. First, we interpret the lack of proportional understanding, then we 

interpret the format by quantity interaction. 

The Lack of Proportional Understanding 

We propose that the children did not reason proportionally because their existing mathe- 

matical tools were not sophisticated enough to use the available quantitative information to 

help construct a ratio-based representation. As we argue in the General Discussion, quan- 

titative mental models are built around specific quantitative relationships. Students of this 

age, however, have had little exposure to tools, such as percent, that can help them deter- 

mine a specific multiplicative relationship between number pairs such as 40::24 and 7::4. 

Consequently, students in the number conditions did not have the mathematical where- 

withal to convert the available numbers into modelable, multiplicative forms (cf. Karplus, 

F’ulos, & Stage, 1983). Students in the non-numerical conditions were in a somewhat sim- 

ilar situation. The non-specific quantities (i.e., larger and smaller) did not offer a specific 

multiplicative relationship, and therefore did not support the construction of ratios. In 

either case, without a model of a specific ratio of the ingredients, the children could not 

develop a proportional understanding of the situation. 

One alternative interpretation for the lack of proportional reasoning might be that the 

children had not developed conceptual structures for comparing ratios. A second altema- 

tive is that the children did not use their empirical knowledge to help constrain their under- 

standing of the quantitative relationships. A result that makes both alternatives seem 

unlikely has to do with the nature of the students’ errors. Only 8% of all the students cen- 

tered on one constituent (e.g., the larger glass has more concentrate). Centering on one 

dimension of information is the common error made in proportion problems. The lack of 

centration suggests that the children tacitly understood that the ratio between the concen- 

trate and water stayed the same when it was poured from the carton. Thus, the students 

seemed to have the conceptual wherewithal to understand that the constituent relationships 

in two glasses were comparable. Moreover, they used the empirical knowledge that the 

juice came from the same carton to inform this understanding. 

One method for further weighing the preceding alternatives is to present the orange 

juice problem with easier numbers that are presumably within the purview of the children’s 

mathematical tools. If the students reason proportionally, this would demonstrate that the 
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challenge in bringing mathematics to the world is not always due to a lack of conceptual 

structure or due to a lack of empirical knowledge. Rather, it is sometimes due to a lack of 

mathematical knowledge that can help structure an understanding of a complex empirical 

situation. 

The Effects of the Display Format and Quantities 

The interaction of the format and quantity factors may be understood through the students’ 

use of quantitative (Q) and partitioned (P) explanations. In the diagram-numerical condi- 

tion 74% of the students gave Q explanations compared to 36% of the students in the dia- 

gram-non-numerical condition. Moreover, only 15% of the diagram-numerical students 

used -Q-P explanations, compared to 41% of the diagram-non-numerical students. The 

numbers invited the children to reason quantitatively in the context of the diagram. What 

makes this an interesting result is that in the context of the physical display the numbers did 

not have an effect. Both physical conditions exhibited approximately 50% Q explanations 

and 35% -Q-P explanations. 

This effect may be explained by considering the influences of empirical and quantitative 

information in the four cells of the design. Let us suppose that the physical display pro- 

vided sufficient empirical information (e.g., pouring the juice from the carton into the 

glasses) that the students had a “good understanding” of the problem without modeling the 

quantities. Given that the quantitative information was difficult to handle, they may have 

been disinclined to use it, and instead, relied solely on their empirical understanding. In 

contrast, the diagram conditions did not strongly afford reasoning about the perceptual 

aspects of the situation and instead pulled for a more analytic stance. In the diagram- 

numerical condition the children tried to use the numbers to analyze the situation (and 

failed). In the non-numerical diagram condition, the children were not given specific quan- 

titative information that they could use in their analyses, so they relied primarily on their 

empirical knowledge, however weakly cued by the diagram. 

An alternative class of interpretations that helps to clarify our position involves two 

forms of “seduction”: perceptual and social. First, perhaps the physicality was such a pow- 

erful cue that the students were perceptually seduced to disregard the quantities altogether 

(e.g., Bruner, Oliver, & Greenfield, 1966; Bryant & Kopytynska, 1976). This interpretation 

differs from ours in a subtle way. Unlike the perceptual seduction account, we do not 

assume that children in the physical conditions disregarded quantitative information. 

Rather, we claim that the quantities were too difficult to help them construct a quantified 

model of the empirical situation (cf. Carpenter, 1975). 

A second source of seduction may have been the social context (e.g., McGanigle & 

Donaldson, 1975; Light & Gilmour, 1983). The simplicity of the correct answer may have 

caused the students to outsmart themselves. Maybe they assumed that there must be some 

difference if the experimenters were asking such an obvious question (e.g., Samuel & Bry- 

ant, 1984). This interpretation, however, does not explain why this did not occur equally in 

all the conditions. A more powerful alternative is that the students in the diagram-numeri- 

cal condition perceived a “mathematical task demand” because the diagram looked some- 

thing like a textbook problem. Consequently, they tried to “push symbols” in disregard of 



QUANTITATIVE MENTAL MODELS 489 

their empirical knowledge. Again, this interpretation differs from ours in a subtle way. The 

seduction interpretation claims that the diagram led the children to disregard empirical 

knowledge. We claim that diagrams, in general, lead to more analytic problem-solving 

approaches, not that they cause people to disregard empirical knowledge (Schwartz, 1995). 

We can test the seduction interpretations with the same manipulation designed to test 

our account of why the children did not reason proportionally; namely, by using numerical 

relations within the children’s mathematical purview. If the easier numbers lead children in 

the physical condition to use quantitative information, this would show that the physical 

presentation does not seduce the children to disregard quantitative information. And, if the 

students who receive easier numbers in the diagram format show correct understanding, 

then this shows that the diagram and numbers do not cause the students to disregard their 

empirical knowledge in favor of blind symbol pushing. 

V. EXPERIMENT2 

The quantities factor of Experiment 2 included the levels of hard and easy numbers. The 

hard numbers replicated Experiment 1. For the easy number conditions, the glasses were 2 

oz. and 4 oz. (2::4), and the carton had 20 oz. of water and 20 oz. of concentrate (20::20). 

Green0 (199 1) has claimed that models involving specific multiplicative factors or divisors 

are easier to construct than those that do not involve specific values, and that models 

involving doubling and halving are probably available to many people. Supporting this 

claim, Spinillo and Bryant (1991) showed that young children can make proportion judg- 

ments involving the “half’ boundary. The 20::20 carton may help children construct a half- 

half relationship. Moreover, it should be relatively easy to map the half-half relationship 

into the 2::4 glasses. So, on the one hand, these easier numbers may help children develop 

a proportional understanding of the juice scenario. On the other hand, the 2::4 glasses are 

in a specific doubling relationship. Consequently, the students may emphasize the larger 

quantity of juice in the larger glass. Based on Experiment 1, this should often result in a dif- 

ferent-taste response. We did not have a priori predictions about how format would inter- 

act with easy numbers, so we develop our explanations in the Results and Discussion. 

A complement to the proposal that mathematics can help people construct a model- 

based, situational understanding is the proposal that the subsequent use of mathematics can 

also modify one’s model or one’s faith in a model. Siegler (1981), for example, explained 

the initial appearance of conservation in small number tasks by noting that children use 

mathematical strategies on small numbers that test and support their initial qualitative 

hunches. “As soon as children suspect that adding objects to a collection or taking them 

away may affect their number, they can simply count or pair the collections before and 

after the transformation. Eventually, they come to realize that these tests always indicate 

that when something has been subtracted there are fewer” (p. 54). 

To examine the effect of explicit mathematical work on a previously constructed under- 

standing, we asked the children to attempt a mathematical justification after their judg- 

ments and explanations, and then afterwards, to make a judgment about the problem one 

more time. Per the EQM frame, we expected the students’ initial understanding to affect 
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their subsequent mathematical work. We also expected, however, that the explicit mathe- 

matical work would change the understanding of some students. In particular, students who 
originally judge same-taste may subsequently change their beliefs, if their initial models 
are not ratio-based. If their models are not ratio-based, then they cannot support propor- 
tional mathematics, and without proportional mathematics, the students should create an 
unsuccessful, explicit “test” of their same-taste beliefs. This negative test should under- 
mine their same-taste confidence. In contrast, students who initially constructed ratio- 

based models should not revise their judgments, because their models should yield compu- 
tational methods that are successful. 

Method 

Participants 

Seventy-five students from an urban middle-school were randomly assigned to condition. 
The students were in the final 10 weeks of the 6th grade. The students had above average 
mathematical ability. For the 58 students for whom we could obtain results on the Tennes- 
see Comprehensive Assessment Program, the average percentile ranking was 83.16 (SD = 
18.67). 

Design, Materials, & Procedure 

The quantifies andfomzat factors were crossed to make four between-subjects conditions 
that were run in separate rooms. The levels of format were diagram and physical. The quan- 
tities factor had the levels of easy and hard numbers. The hard numbers replicated Experi- 
ment 1. The easy numbers used a carton with 20 oz. of water and 20 oz. of concentrate, and 
the glasses were 4 oz. and 2 oz. A within-subject factor, called muthemutizing, was added 
to the current experiment. Students reported taste judgments both before and after they tried 
to construct a mathematical justification for their response. The mathematical justifications 
also served as a dependent measure. There were four phases to the experiment. In phase 1, 

an experimenter read the script. In phase 2, the students filled in a response form similar to 
Experiment 1 but that included a confidence scale ranging from 1 to 5. Students circled the 
number that indicated how sure they were of their same-different answers with 1 being 
“very unsure” and 5 being “very sure.” In phase 3, students received a sheet that requested 
a mathematical justification for their response. Students were encouraged to write some- 
thing and were given as much time as needed. In phase 4, the students circled their taste 
judgment and indicated their confidence on a scale from 1 to 5 on a new sheet. 

Results 

Accuracy Prior to Mathematizing 

Figure 3 shows that, as before, students were more frequently correct in the physical-hard 
condition than the diagram-hard condition. Compared to Experiment 1, there were more 
correct responses for the hard number conditions. This could be a result of the higher math 
ability, the extra months of maturation, or instruction. More importantly, for the easy num- 
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Figure 3. Percent Correct Responses by Condition (Exp. 2) 

bets, students were more frequently correct in the diagram condition than in the physical 

condition. Thus, the effect of format was inverted for the easy and hard numbers. The for- 

mat by quantities interaction was significant; Z = 2.40, SE = .16, p < .05, with no evidence 

of main effects; both Z’s < 1. The success of the diagram-easy students shows that the com- 

bined effect of the diagram and numbers is not simply to lead the children into blind num- 

ber pushing. 

Table 3 shows the distribution of explanation types and their accuracy across the four 

conditions. Only 37% of the physical-hard students used Q models, whereas 83% of the 

physical-easy students used Q models. This latter result shows that physicality per se does 

not seduce children to disregard quantities. Overall, students used Q models more fre- 

quently in the easy-number conditions than in the hard-number conditions; Z = 2.4, SE = 

.13, p < .05. This supports our proposal that simpler numbers, more in the purview of the 

children’s mathematical tools, would influence their understanding of the situation. There 

were no other significant effects; Z’s < 1.5. The question at hand, then, is why the easy 

numbers led to inaccurate Q models in the physical condition but not in the diagram con- 

dition. The following analyses attempt to explain this result specifically and the crossover 

interaction more generally. We begin by considering the types of QP models found in the 

different conditions. 

The Effect of the QP Models on Accuracy 

This experiment generated proportional reasoning. Table 1 shows that 17% of the students 

gave correct QP explanations. Articulate proportional: Students explained that the ratio of 
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concentrate and water was the same across the carton and two glasses. For example, one 

student wrote that the concentrate and water relationship “was 50-50.” Proto-proportional: 
These explanations also led to a same-taste conclusion, but the use of language was less 

explicit. One student wrote, “The carton and glasses have the same amount of concentrate 

and water.” Because the carton and glasses manifestly did not have similar amounts, we 

conclude that this child was trying to articulate that the containers had the same “relative” 

amounts of constituents but simply did not have the appropriate language to do so (e.g., 

“ratio” or “percent”). 

Not all the QP explanations generated in this experiment were proportional, however. In 

fact, excepting one student, only the QP explanations led to inaccurate responses. To dem- 

onstrate this effect statistically, the quantification and partitioning of the explanations were 

crossed factors with confidence score as the dependent measure. The continuous confi- 

dence scores allow us to use parametric statistics. Confidence scores were signed so that a 

different-taste response received a negative value (e.g., a same-taste confidence of 4 was 

scored as +4, and a different-taste confidence of 4 became -4). The average confidence 

scores, broken out by explanation type, were: QP = 0.44, Q-P = 4.02, -QP = 3.25, and 

-Q-P = 3.93. There was a main effect of partitioning on confidence; F( 1,68) = 21.2, MSE 
= 86.5, p < .Ol, and there was a marginal main effect of quantifying; F( 1,68) = 2.8, p < .l. 

Both of these main effects, however, were compromised with a quantifying by partitioning 

interaction; F( 1,68) = 4.9, p c .05. This interaction indicates that students with QP expla- 

nations had less same-taste confidence than students who used the other three models. 

These data complement the aforementioned fact that, excepting one student, only the QP 

explanations led to different-taste answers. 

The confidence that students had in their QP models varied systematically by condition. 

Considering only those 24 students who used QP models, students were confident in a 

same-taste response in the diagram-easy (M = 2.86, n = 7) and physical-hard (M = 3.0, n = 

5) conditions, but they were confident in a different-taste response in the diagram-hard (M 

= - 1.38, n = 8) and physical-easy (M = -1.71, n = 7) conditions. The interaction of format 

and quantities on the confidence of students who used QP models is significant; F( 1,23) = 

13.8, MSe = .72, p < . 01. 

Why Easy Numbers Interacted with Format 

Given the foregoing results, we are in a position to offer an explanation for why the easy 

numbers interacted with format. It appears that the diagram-easy students successfully con- 

structed QP models with ratio structures, and this explains why they had high confidence 

in their same-taste responses. The easy numbers enabled them to map the carton’s half-con- 

centrate and half-water structure into the glasses. In contrast, in the physical condition, the 

easy numbers led to non-proportional QP models, and this explains why they had low-con- 

fidence in a same-taste response. Our interpretation of this latter effect is that the physical 

format led the students to model the juice primarily as a single material entity (just as this 

format had done in the physical-hard condition). At the same time, the 2::4 doubling rela- 

tionship between the glasses invited the students to model the unequal juice amounts. As a 

result, the physical-easy students reasoned that different quantities of juice taste different. 
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A weakness of this explanation is that the students who made errors in the physical-easy 

condition were identified as having partitioned the constituents. Consequently, it is hard to 

claim that they were reasoning about juice as a unitary entity. Our Q and P factoring of the 

explanations, however, may be too coarse. The QP students who made mistakes tended to 
emphasize that the larger glass had more concentrate and water. Although they acknowl- 

edged the separability of the ingredients, as captured by our factoring scheme, they were 
still reasoning primarily with respect to the whole quantities of juice. Further evidence sup- 

porting the interpretation that the physical-easy students were reasoning with whole quan- 
tities may be had from their mathematical justifications. 

Types of Mathematical Solutions 

As we examined the mathematizing results, two coherent mathematical approaches 

emerged. The half--half solution used a numerical relationship between the constituents in 

each glass. For example, one student wrote, “20 + 20 = 40, 1 + 1 = 2,2 + 2 = 4,” implying 

two equal parts in each container. In contrast, the double solution used a numerical rela- 
tionship between the amounts of juice in each glass. For example, one student wrote, “2 + 

2 = 4 glass, 2 + 4 = 6 glass.” Evidently, the student added two 2 oz. glasses of juice to make 
the 4 oz. glass, and then continued on to add the 2 oz. and 4 oz. glass to make a 6 oz. glass. 

A primary coder, blind to the format condition, categorized the mathematical work either 

into the half-halfor double categories, and if neither, into an other category. There were no 
cases where a student tried both half-half and double solutions. The half-half category also 
includes more complex ratio attempts for the hard numbers. Similarly, attempts to add or 
subtract the glass quantities for the hard numbers were coded in the double category. Nei- 

ther of these attempts was frequent, so we retain the more descriptive labels. The “other” 

category folds together a variety of mathematical attempts. The intent of these attempts 
were not easily evaluated from the written work, nor were they as relevant for understand- 
ing the contrast between the two easy conditions. A secondary coder categorized 40% of 

the mathematical efforts with 92% agreement. 

Figure 4 shows that the two easy conditions led to most of the half-half and double 
explanations; Z = 2.4, SE = .24, p < .05. It also shows that 53% of the students in the dia- 

gram-easy condition used the half-half solution, compared to 11% in the physical-easy 
condition. Inversely, 44% of the students in the physical-easy condition used the doubling 

solution, compared to 2 1% in the diagram-easy condition; Z = 2.4, SE = .27, p c .05. These 
results suggest that the physical-easy students were modeling the juice as a unitary entity, 
because they used whole quantities in their mathematical justifications. In contrast, the dia- 
gram-easy students modeled the ingredients, as indicated by their use of half-half relation- 
ships. 

Effects of Mathematizing on Same-Different Confidence 

After mathematizing, there was a drop in the frequency of correct answers in all conditions 
except the diagram-easy condition (change in percent of correct answers: diagram-easy 
O%, diagram-hard -25%, physical-easy -3O%, physical-hard -29%). A logistic analysis 
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Figure 4. Distribution of Mathematical Justifications by Condition (Exp. 2) 

indicated that students in the physical conditions were the most likely to change their 

answers; Z = 2.5, SE = .20, p -c .05, no other effects. Figure 5 shows confidence ratings 

before and after students mathematized their answers. Except for the diagram-easy condi- 

tion, in which we had found the majority of the successful half-half solutions, mathematiz- 

ing caused decreases in same-taste confidence. This makes sense if one supposes that 

mathematics can be used retrospectively to evaluate one’s understanding of a situation. 

The non-ratio models could not shape a computation that resulted in an equality between 

the glasses, and the students lost confidence in their same-taste answers. 

To demonstrate the effect statistically, the confidence ratings before and after mathema- 

tizing were within-subject measures, with format and quantities as crossed between-sub- 

jects factors. The results yielded a complex set of two-way interactions. There was a main 

effect of mathematizing; F(1,71) = 21.86, Me = 5.72, p c .Ol, whereby same-taste confi- 

dence diminished after mathematizing. However, this effect was compromised with a for- 

mat by mathematizing interaction; F( 1,71) = 7.97, p < .Ol, and a quantities by 

mathematizing interaction; F( 1,7 1) = 3.72, p < .06. The interactions indicate that confi- 

dence dropped the most for the physical and hard quantity conditions. There was no format 

by quantities by mathematizing interaction; F( 1,7 1) = .07, p > .75. The lack of the three- 

way interaction is surprising given the evident drop in confidence ratings in all but the dia- 

gram-easy cell. The three-way interaction did not reach significance because the diagram- 

easy condition confidences were higher both before and after mathematizing. As a result, 

the format by quantities interaction could be captured by a strong two-way interaction that 

averaged the before and after confidence ratings; F( 1,71) = 8.76, MSe = 15.55, p < .Ol. 
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Averaged over the before/after ratings, there were no main effects of quantities; F( 1,7 1) = 

1.22,~ > .25, or format; F(1,71) = .84,p > .35. 

Discussion 

The current experiment demonstrated that if quantitative information is within the purview 

of children’s mathematical knowledge it can have a profound effect on their understanding 

of and judgments about an empirical problem. It was mainly through the easier numbers 

that the children developed a proportional understanding of the juice problem. At the same 

time, because the quantities and format factors produced a cross-over interaction, it is clear 

that quantitative information and mathematical knowledge alone did not cause different 

types of understanding. When easy numbers were coupled with a diagram, the students 

correctly determined that the glasses would taste the same. But, when the easy numbers 

were coupled with a physical display, many students reasoned that the glasses would taste 

different. This latter result is intriguing because the students gave same-taste responses 

when the physical display included hard numbers. 

One reason this finding may be surprising is that there is a tendency to think of mathe- 

matics as being applied via associative rules (e.g., if X then do Y). So, one might assume 

that if easy numbers are associated with a same response, and if physicality is also linked 

to a same response, then their combination should lead to a same response. This should 

occur whether the two rules strengthen one another, or whether one rule is dominant due to 
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stronger cue-activation (Halford, 1993; Klahr & Wallace, 1976). The results, however, do 

not easily support a “rule-competition” explanation. One fix is to propose that there is asso- 

ciative interference between rules (Briars & Siegler, 1984). To our knowledge, however, 

this only occurs when associative rules have competing outcomes. Alternatively, one 

might postulate an additional rule. Siegler (1981) for example, added a rule to account for 

the fact that young children give correct responses to conservation problems with small 

numbers, but not large numbers. Although adding a rule does account for the data, we 

believe there are other considerations that can explain such interactive effects. For exam- 

ple, in Siegler’s study, the children may have had the mathematical tools (e.g., counting) to 

handle small numbers but not large ones. 

We use Figure 6 to help explain our interpretation. In the figure, we use a large font to 

indicate information that was in the mental foreground during model construction, whereas 

the small font represents less salient information. For example, one may see that for both 

physical conditions, the separate ingredients in the carton were not salient because the chil- 

dren were thinking of juice as a single, unpartitioned entity. One may also note that because 

of this they did not model an ingredient relationship in the glasses. For these students, the 

glasses were filled with juice, as indicated by the gray shading, not concentrate and water. 

In contrast, in the diagram conditions, students treated the ingredients as separate constitu- 

ents in the carton. The jagged line of the upper-right panel indicates that in the diagram- 

hard condition, the students could not put the ingredients into a specific quantitative rela- 

tionship. Consequently, these children could not carry the difficult ratio of 24::40 to the 

equally difficult glass sizes, and therefore they thought primarily of juice in the glasses 

(shown by the gray shading). In contrast, the students had enough mathematical sophisti- 

cation to handle the diagram-easy numbers. They could carry the half-half ratio to all the 

containers, and therefore, they were able to keep the ingredients separate in their model of 

the glasses. 

The easier numbers made it possible for students to use their mathematical knowl- 

edge to help structure their understanding of the problem. This was why there were 

more Q models in the easy conditions than the hard conditions. The use of mathemat- 

ics, however, did not guarantee correct understanding. In the case of the physical format, 

for which the students thought of juice as a single entity, the 2::4 glasses led the stu- 

dents to model the doubling relationship, and they drew their inferences on the basis of 

unequal juice quantities. In the case of the diagram format, the simple numbers helped 

the students to model a half-half relationship in the carton, and the evenness of the 2::4 

glasses allowed them to carry this relationship to each glass. As a result, they devel- 

oped a model of equal constituent ratios on which to base their taste judgment. For both 

the diagram and physical presentations, we can see how empirical knowledge (e.g., juice 

as comprised of two ingredients, juice coming from the same container) and mathemati- 

cal knowledge (e.g., 2+2=4) interacted to influence how the students understood the 

world. 

The data suggest that the current examples of proportional reasoning resulted from 

models constructed in working memory during problem solving and did not result from the 

retrieval of an intact, long-term memory structure like a proportional reasoning schema. 
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Figure 6. A Schematic of Children’s Reasoning in Each Condition. 

The large type indicates information that was in the foreground of the children’s thinking, 

whereas the small type represents less salient information. 

Consider that the students appeared to have tacit knowledge that the ratios would not 

change when poured from the carton; only 4% of the children argued for a different taste 

using the reason that one glass had more concentrate or water than the other. They also 

appeared to have retrievable knowledge that ratio determines flavor (as demonstrated by 

the diagram-easy condition). Yet, despite “possessing” the key information, the students 

did not reason proportionally when the numbers were difficult. We believe this is because 

tbe children needed to put the “tacit” information together into a coherent model before it 

constituted understanding. This is why the mathematical tools for handling easy numbers 
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played such an important role. They unveiled relationships, like l-to-l correspondences, 

that the children could use to pull their models together. 

Given our interpretations, we can make predictions about an experiment that makes 

even more subtle changes between the conditions. As before, the hard conditions use the 

4::7 glasses, and the easy conditions use the 2::4 glasses. But now, both the hard and easy 

conditions use the 20::20 carton. The easy numbers should, of course, produce the same 

outcomes as before. But, according to our account, the new hard conditions should also 

produce the same outcomes as the previous hard number conditions. In the physical condi- 

tion, the students should be inclined to think of juice experientially. Therefore, they will 

not model the partitioned 20::20 relationship in the carton. And, as before, the 4::7 glasses 

do not offer an easily modeled quantitative relationship, so the students will not incorporate 

the glass quantities into their model either. Consequently, they will tend to answer same 

taste based on empirical experience. In the diagram condition, the students should analyze 

the 20::20 relationship, but they should not have the mathematical tools to map this rela- 

tionship easily into the 4::7 glasses. Consequently, they will not construct a model in which 

there is a specific ratio in the glasses, and they will tend to answer different taste because 

they will try to accommodate the 4 and 7 quantities additively by noting that one glass is 

“3 more” than the other. As an alternative hypothesis, perhaps the effect of the 20::20 car- 

ton in the diagram condition of Experiment 2 was to cue the retrieval of a proportional rea- 

soning schema. If this is the case, then the 4::7 quantities in the following experiment 

should make little difference because the 20::20 carton will have already cued a propor- 

tional reasoning schema to organize the children’s thoughts. 

VI. EXPERIMENT 3 

In this experiment, both the hard and easy number conditions used a 20::20 carton, with the 

only difference being the size of the glasses (4::7 and 2::4, respectively). Each child 

received a packet of materials that showed the problem as either a photograph or a diagram. 

Presenting the problem in packet form removes possible experimenter effects due to a 

group administration of the conditions. It also determines whether a “realism effect” 

extends to photographic displays as has been found elsewhere (DeLoache & Marzolf, 

1992; Schwartz, 1995). If so, the results may have implications for the design of textbooks 

and the decision whether to use photographs or diagrams. 

Experiment 3 included two further modifications to address lingering concerns. Exper- 

iment 2 recruited high-achieving students. To increase generality, the current experiment 

used an average student population similar to Experiment 1. A second concern was 

whether there was something odd about the details of the orange juice task that led to dif- 

ferent-taste responses. To address this concern, a subset of students completed a set of sec- 

ondary tasks in an interview setting. The tasks and their specific purposes are described 

below. If the secondary tasks show the same distribution of same and different responses, 

then this suggests that the results from the original scenario were not due to factors that 

were incidental to our main claims. 



Method 

Eighty-nine 6th-graders from four classrooms participated in the study. The students were 

in the first 10 weeks of the 6th grade and were of average ability. The students separated 

their desks from one another and were randomly handed one of four problem packets. For 

thefomzat factor students either received packets with diagrams or color copies of photo- 

graphs . For the crossed quantities factor the glasses were either in a 2::4 or 4::7 pairing. 

In either case, the carton was labeled with 20 oz. of water and 20 oz. of concentrate. Each 

packet included a cover sheet, the juice scenario, a sheet requesting a taste judgment and 

confidence rating (1 to 5), and a final explanation page. The students did not turn a page 

until they had completed their current page. 

Based on their packet responses, two same-taste and two different-taste students from 

each condition were randomly selected for interview the next day. One interview was not 

completed due to experimenter error. The students solved four problems in order. (1) They 

re-solved the problem from the previous day. (2) They solved a Paint problem that was 

similar to the orange juice problem. This ensured that the previous results were not exclu- 

sive to non-visual judgments. Students saw a 10 oz. container of red paint and a 10 oz. con- 

tainer of white paint. They were told that the paint from another set of identical containers 

had been mixed to make a container of pink paint, and they were shown a pink paint con- 

tainer. They then saw two opaque containers. They were told that the two containers had 

been filled with the pink paint. Students from the 2::4 conditions were told that the target 

containers were 4 oz. and 8 oz. Students from the 4::7 conditions were told the containers 

were 5 oz. and 8 oz. The students were asked if the pink paint inside the opaque containers 

was the same color. (3) The students solved a QOO~S problem from their original juice sce- 

nario. They decided whether a spoonful of juice taken from each glass would taste the same 

or different. If students believed that the spoonfuls tasted different, then they were not 

interpreting “more orangy taste” as “longer lasting taste.” (4) In the 2 -> 1 problem, stu- 

dents were told that there were two glasses holding equivalent amounts of identical juice. 

They were told that one glass was poured into the other. They were asked whether this 

glass of juice would taste stronger. Because there were no numbers, this problem allowed 

us to examine whether the different-taste results were simply due to mindless number 

pushing. 

Results and Discussion 

Table 4 shows the frequency of correct response and Figure 7 shows the confidence scores. 

The experiment yielded the predicted cross-over interaction of format and quantities. The 

diagram-2::4 and photo-4::7 conditions led to more correct responses than the diagram4::7 

and photo-2::4 conditions; Z = 2.15, SE = .l 1, p c .05, and a greater average confidence in 

a same-taste response; F(1,85) = 5.58, MSe = 13.7, p < .05. This replication of Experiment 

2 is striking in that the students were less advanced mathematically, a photograph was used 

rather than a physical set up, and only the sizes of the glasses differed between the numer- 

ical conditions. The interpretations of these results are the same as proposed in the Discus- 

sion of Experiment 2. 
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Figure 7. Average Confidence in Same-taste Responses by Condition (Exp. 3) 

Table 4 shows that many students did not provide written explanations with the packet- 

based administration of the task. This makes a statistical analysis of the written explana- 

tions problematic due to self-selection; students who did not provide explanations were 

more likely to have given an incorrect response (see “none” rows of Table 4). Qualita- 

tively, the patterns replicate the previous experiments in that the Q models generally led to 

incorrect responses in all but the diagram-2::4 condition. As in Experiment 2, students in 

the diagram-2::4 condition had a high rate of QP models, and these models were more 

likely to be correct than the answers based on QP models in the other conditions. Students 

in the photo-2::4 and diagram-4::7 conditions who used QP models were the least fre- 

quently correct of all. As before, the errors were primarily due to the belief that more juice 

(or more concentrate and water) would lead to more taste. 

Figure 8 displays the responses to the interview questions. Each row corresponds to one 

student, rank ordered by accuracy. Three students consistently reasoned that the target con- 

tainers would have the same quality (i.e., taste or color), and two students consistently rea- 

soned that the containers would be different. The remaining ten students changed their 

answers across the questions. Although these changes might be taken as a sign of problems 

with task-reliability, they were expected because the previous results showed that subtle 

task variations affected student responses. Moreover, the variability makes sense if we 

assume that the students did not have a well-worn, higher-order schema (i.e., proportional- 

ity) that could determine the similarity among problems. 

The summary frequencies at the bottom of Figure 8 indicate that the follow-up questions 

had nearly identical distributions of same-different responses as the original problem. Each 
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Figure 8. Distribution of Responses to the Four Interview Problems (Exp. 3) 

problem counters a different alternative interpretation. The Paint problem indicates that the 

previous results were not peculiar to taste. The Spoons problem, in which the final quantity 

of juice in each spoon was equivalent, indicates that students were not generally thinking 

that stronger taste means longer lasting taste. Finally, responses to the 2->l problem, in 

which two identical glasses were poured into one glass, show that different-taste answers 

were not the result of students being tricked into mindless computation. This is because the 

problem did not have numbers. 

VII. GENERAL DISCUSSION 

Three studies produced evidence supporting the proposition that mathematics provides 

leverage on the material world because it is used as a tool that makes a complex situation 

cognitively tractable, and thereby helps people construct mental models of that situation. 

The studies were conducted in the context of proportional situations because nascent pro- 



TABLE 5 
Overview of Average Taste Judgments by Experimental Condition 

Quantities of Carton & Glasses 

Format Non-Numerical’ 24::40 & 4~17“~ 20::20 & 2::4bC 20::20 & 4::7= 

Physical/Photo Same-Taste Same-Taste 

Diagram Same-Taste Different-Taste 

Note. “Experiment 1. bExperiment 2. CExperiment 3. 

Different-Taste 

Same-Taste 

Same-Taste 

Different-Taste 

portional reasoning is an excellent example of where mathematics might provide new 

insight into the world. As children’s knowledge of proportional relations evolves, so do the 

ways they can understand the empirical world. To develop evidence on how empirical and 

mathematical knowledge come to interact successfully, we manipulated children’s use of 

empirical and mathematical knowledge by changing the numerical complexity and physi- 

cal presentation of the orange juice scenario. The effects of these manipulations, summa- 

rized in Table 5, put us in a position to evaluate several explanations for the effectiveness 

of mathematics. We do this next and then sketch our accountquantitative mental mod- 

els-more fully. We conclude with a discussion of the potential of our account with respect 

to cognitive development and instruction. 

Understanding and Mathematical Application 

One explanation for why mathematics effectively explains the material world is that people 

see the world through a cognitive filter of mathematical structure. Such a proposal would 

be consistent with modular nativism (e.g., Fodor, 1983) and has been used, most notably, 

to explain the universality of linguistic structure (Chomsky, 1966). Gopnik (1996) summa- 

rizes the position: “According to modularity theories, representations of the world are not 

constructed from evidence in the course of development. Instead representations are pro- 

duced by innate structures, modules, or constraints. These structures may need to be trig- 

gered, but once they are triggered, they create mandatory representations of input” (p. 222). 

In quantitative domains, this claim may hold for some forms of topology because people 

invariably experience particular spatial structures, and it may hold at a “bootstrapping” 

level such that people necessarily see the world in terms of identities, aggregates, and sym- 

metries. Nonetheless, as Piaget (1972) pointed out, such a claim does not explain why peo- 

ple can often find different mathematical structures in the same situation, why they apply a 

mathematical structure to one situation but not to its isomorph, and why they sometimes do 

not see any mathematical structure at all. Consequently, a cognitive filter explanation has 

difficulty explaining the decalage found in the current experiments. In proportional reason- 

ing, at least, the effective application of mathematics is not a necessary consequence of 

people’s cognitive constitution. 

A second type of explanation, more suited to handling applications and misapplications 

of mathematics, is that there is an historical (empirically found) association between situa- 

tions and mathematical knowledge. People apply mathematics to a given situation because 
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they have learned which situations call for which mathematics. Such an associative 

account has great flexibility because the relationship between the empirical and the math- 

ematical is structurally arbitrary. There are no constraints, other than historical success, for 

determining what associations should develop. The present results are problematic for 

straight-forward associative explanations. First, the results show that the application of 

mathematical knowledge cannot be solely ascribed to an historical association with a spe- 

cific domain of situations; for the same task from the same domain children developed dif- 

ferent understandings and different answers. Second, we explored a situation (physical- 

easy conditions) where two purported associative bonds, both calling for a same-taste 

response, would be activated. According to an associative account, one would predict a 

same-taste response, regardless of whether one association was stronger or whether the two 

associations co-activated a same-taste response. The children, however, tended to give a 

different-taste response. 

A third class of explanation is that there are structural correspondences between situa- 

tions and mathematical knowledge. In this explanation, people apply mathematics by find- 

ing the isomorphism between situations and mathematics. The most prevalent version of 

the isomorphism explanation adopts the EQM frame, whereby the structure of one’s qual- 

itative understanding of a situation serves as the basis for understanding or for selecting 

structurally appropriate mathematical operations. Such an “EQM-isomorphism” could 

explain the effect of the diagram with the 20::20 carton and the 2::4 glasses. Perhaps the 

half-half structure of the carton helped the children to think in terms of a qualitative pro- 

portional schema, which in turn made them aware that they could compare ratios for the 

2::4 glasses. If this explanation were correct then we should have also expected the chil- 

dren to reason proportionally for the diagrams with the 20::20 carton and the 4::7 glasses. 

The half-half structure was present here as well. Experiment 3 showed, however, that the 

children did not reason proportionally for the 4::7 problem. Evidently, the understanding of 

proportional structure came through children’s ability to model the half-half ratio in the 

2::4 glasses, rather than preceding it in a qualitative form. 

There is another version of the isomorphism explanation that does not entail the EQM 

assumption. In this version, people map their experience of the world directly into mathe- 

matical structures. For example, Bassok and Holyoak (1989) demonstrated that when solv- 

ing a physics problem people will map a formula learned in the context of algebra, but 

when solving an algebra problem they will not map a formula learned in the context of 

physics. According to theories of analogical process, people might understand a novel 

empirical situation by mapping it into a mathematical representation with a known struc- 

ture (e.g., Gentner, 1983). In the current experiments, however, the children did not appear 

to have robust mathematical structures that could serve as knowledge sources. Instead, they 

appeared to combine partial empirical and mathematical knowledge into novel working 

memory structures. This raises the question of how the children determined which “parts” 

to include in their final knowledge structure, given that neither partial knowledge source 

can determine this alone. In the situation of mapping between partial knowledge, it is 

important to specify higher-order constraints that determine which mappings are accept- 

able. There have been several proposals for these constraints (e.g., Gentner & Toupin, 
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1986; Spellman & Holyoak, 1996). Halford, Wilson, and Phillips (in press), for example, 

argue that people choose relationships that reduce working memory demands and that this 

tendency can explain which relationships people will map through analogy. In the follow- 

ing section, we also describe one possible higher-order constraint that stems from the 

nature of working memory, although we do not emphasize analogical processes or isomor- 

phisms. 

One reason that we do not emphasize the use of analogy to map between empirical and 

mathematical knowledge is that it often comes with two assumptions. The first common 

assumption is that understanding in one domain is “borrowed” from one’s understanding 

in another domain. The mapping process between domains is what “carries” this under- 

standing across source and target. In the current case, however, the children appeared to 

develop new understandings by integrating empirical and mathematical knowledge into a 

single structure. The second common assumption is that there is a pre-existing similarity or 

isomorphism between the source and target domains, in this case mathematical and empir- 

ical. This similarity assumption presupposes why mathematics can so effectively explain 

the world (cf. Medin, Goldstone, & Gentner, 1993), but this is what we are trying to inves- 

tigate. To avoid each of these assumptions, we do not try to explain the effectiveness of 

mathematics from a structuralist perspective in which the emphasis is on structural corre- 

spondences. Instead, we explore a functionalist perspective in which mathematics helps 

cognitive operations. So, instead of viewing mathematical and empirical knowledge as par- 

allel but isomorphic streams across which people create bridges, we treat them as sources 

of information that feed into and co-constrain a process in which people construct a single 

representation. This representation is consistent with, but not equal to, the original streams 

of knowledge. The completed representation, which we call a quantitative mental model, 

may in turn yield new insights about the world. 

Quantitative Models 

The preceding explanations incorporate important general mechanisms including analogi- 

cal mapping, retrieval, associative strengthening, and bootstrapping architectures. These 

general mechanisms should be included in a full explanation of the current data. Our goal, 

however, is somewhat more domain specific. We are trying to explain why a formal system 

of mathematics, as opposed to something like a formal system of logic, provides such pow- 

erful leverage on the world. Our speculation is that mathematics provides a set of cultural 

tools that function to simplify complex situations into cognitively tractable structures. An 

average and standard deviation, for example, provide a way to reduce the complexity of a 

distribution into a form that is more amenable to internal reflection. In contrast, logical for- 

malisms seem to increase complexity (in our experience at least), which may explain why 

logic instruction has dubious lasting effects compared to mathematics instruction (e.g., 

Nisbett, Fong, Lehman, & Cheng, 1987). 

In addition to the current data, prior evidence indicates that children can demonstrate 

numerical conservation (Siegler, 1981; Winer, 1974; Zimiles, 1966) and proportional rea- 

soning (Hart, 1981; Karplus, Pulos, & Stage, 1983; Lave, 1988; Noelting, 1980b) with 

“easy” numbers even though they cannot do so with hard numbers. Our explanation is that 
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the hard numbers exceed the mathematical tools available to the children, and conse- 

quently, they cannot transform the difficult numerical relationships into modelable forms. 

If we entertain this functional role for formal mathematical knowledge, the critical ques- 

tion concerns the nature of mental models that makes them amenable to mathematics and 

to the synthesis of empirical and mathematical information. 

While there are numerous proposed properties that distinguish mental models from 

other types of representational structures (e.g., Holland, Holyoak, Nisbett, & Thagard, 

1986; Johnson-Laird, 1983), we emphasize specificity here (Schwartz & Black, 1996a). A 

mental model is constructed “on-line” to represent a specific state of affairs. The property 

of specificity is why, in the domain of deduction for example, it is often necessary to enter- 

tain multiple models to draw an inference; one needs a separate model for each specific 

possibility (Johnson-Laird, 1983). In the domain of quantity, specificity implies that men- 

tal models should not be characterized as relational structures in which specific numerical 

attributes only play an incidental role. Although models hold relational information, they 

also require specific instantiations. One does not model a triangle in general, one models a 

triangle with specific angles. This is not to claim that one cannot model a specific triangle 

to aid in drawing general conclusions, or that one cannot develop non-model representa- 

tions for things like triangles-in-general. Schwartz and Black (1996b), for example, asked 

people to reason about the motions of connected gears. When the problems were novel, 

people modeled each gear’s specific motion with their hands. However, over a period of 

time, people induced a more abstract rule (e.g., all odd gears turn the same direction) that 

did not require a model representation of each specific gear and its motion. Perhaps in the 

domain of proportional reasoning, the construction of specific models provides the basis 

for the induction of more abstract schemata that are stored in long-term memory. 

One reason that we suggest characterizing early proportional reasoning in terms of men- 

tal models is that the children’s understanding was highly influenced by the specific quan- 

tities of the problems. Moreover, the children did not exhibit proportional understanding 

when there were no specific quantities. Similarly, Bowers, Cobb, and McClain (in press) 

found that young children’s understanding of the conservation of material quantity was 

intertwined with their ability to manipulate specific numerical quantities. The children 

apparently needed specific values for their initial quantitative understandings to take form. 

One can highlight the significance of these findings by considering approaches to under- 

standing in which relationships, rather than values, play the primary role in the construc- 

tion of representations. As a specific example, Halford, Wilson, and Phillips (in press) 

propose that entertaining multiple binary relationships entails a high processing load, and 

consequently, people will try to embed (chunk) those relationships in a higher-order rela- 

tionship (or they will treat them sequentially). This type of relational approach is primarily 

syntactic in that what matters is the order of the relationships (e.g., unary, binary, ternary), 

not their content. According to this approach, two binary relationships like double (4, 2) 

and more-than (4,2) are equivalent with respect to their working memory demands regard- 

less of their specific content. The current results show that this type of domain-indepen- 

dent, relational approach is insufficient for modelling quantitative understanding; it is also 

necessary to consider the semantics of the specific quantities. So, for example, even though 
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they are both binary relationships, children in the photograph conditions systematically 

modelled the double relationship between the 2::4 glasses, but they ignored the more-than 

relationship between the 4::7 glasses. We propose that the key to understanding this effect 

involves a consideration of the role of specificity in quantitative mental models. 

To make specificity a generative construct, it is necessary to outline those characteris- 

tics that support model construction. For example, one might compute K to a thousand dig- 

its, but this kind of specificity would not make z any easier to model. Our suggestion is that 

mental models, in general, have a commensurability constraint. This constraint is captured 

by the expression, “You can’t compare apples and oranges.” Individuals prefer mental 

models in which the represented elements can be described in terms of one another. With 

respect to quantitative models of ratios, the commensurability constraint manifests itself as 

a preference for multiplicative specificity. Mental models best represent entities that con- 

stitute integer multiples because the multiples may be represented in terms of one another 

(e.g., 2::4, 20::20, a symmetrically folded paper). 

One reason that models prefer multiplicative specificity is that it provides informational 

redundancy and a correlated decrease in working memory demands. One entity helps to 

specify the other. This co-specification might be thought of as a form of chunking that 

reduces the number of free parameters or independent dimensions of information in work- 

ing memory (cf. English & Halford, 1993). One might speculate that working memory is 

constituted to capitalize on natural symmetries where one part “reflects” another. So, for 

example, in the current research, a child in the physical-easy conditions may have applied 

two distinct mathematical operations to the 2::4 glasses. She may have figured that 4 is 

double 2, and she may have figured that 4 plus 2 equals 6. Because the former relies on a 

“doubling,” it presumably demands less of working memory, and therefore the child may 

have been more inclined to incorporate the double structure into her developing represen- 

tation of the problem. 

In the following paragraphs, we consider different levels of co-specification to motivate 

our hypothesis. A 1:: 1 relation should be the easiest to model because the quantity of one 

term completely specifies the quantity of the second term. The relative ease of representing 

a one-to-one correspondence may explain why the children in the current studies modeled 

the 20::20 carton in a part-to-part, 1:: 1 relation but never in a part-to-whole, 20 out of 40 

(or, 1 out of 2) relation. The part-to-part relation only requires a simple reflection. 

At the next level of co-specification is a 1::2 relation, because one needs an additional 

term to indicate the “times 2” relationship. Still, the terms do co-specify one another, and 

therefore, we should expect that children would be able to reason proporitionally about a 

carton with 10 oz. of concentrate and 20 oz. of water before they could handle the hard 

numbers used here (e.g., 24::40). 

A much harder type of relation is 4::7 because the terms cannot be easily described by 

one another; the 4 cannot serve as an indivisible base unit for specifying the 7. Tools such 

as percent help people model non-integer relations like 4::7 in a relatively simple form (i.e., 

57%). But if one does not possess the appropriate tools, multipiicatively non-specific quan- 

tities may be too complex to model in a multiplicative relationship. In this case, if the per- 

ceived need to consider quantities is high, as it apparently was in the diagram conditions, 
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children may instead construct an additively specific model like “3 more” for the 4 and 7 

glasses. Or, they might rely on a more abstract, qualitative schema that they had induced 

from prior occasions. Assuming that the children in question do not have a qualitative, mul- 

tiplicative schema, they would probably rely on an additive one (e.g., more-than 

(large(glass(A)), small(glass(B)))). 

Finally, and somewhat counter-intuitively, a qualitative small::large relation should be 

the most difficult to model. Sometimes, qualitative relations are more difficult than numer- 

ical ones (e.g., Heller et al., 1990). Imagine, for example, that x is larger than y, and one 

must decide whether the fraction x/y necessarily gets larger when the numerator and 

denominator both increase. An informal survey indicated that many people postulate spe- 

cific numerical values and increments to infer the answer. One way to see why qualitative 

values may be more difficult to model is to compare a ratio representation and a qualitative 

representation of the value 4 when using a binary array with 10 cells. A ratio representa- 

tion, where x means on and o means off, would be ~xyxoooooo. In contrast, a qualitative 

version could be xoxxoooxoo, or oooxxxooox, or oxoxxooxoo, and so forth. Because the 

qualitative version does not necessarily specify ordinal, interval or ratio information, its 

representation has many different instantiations and much less available structure for 

building a coherent understanding. Consequently, modeling the relations between two dif- 

ferent qualitative values may be very difficult. Detecting a lack of one-to-one correspon- 

dence, for example, would require more search of two qualitative arrays than two ratio 

arrays. 

Sometimes people can compare qualitative values based on a perceptual experience of 

a manifest difference (e.g., dim, bright). But, as we developed in the Introduction, a percep- 

tual comparison is not the same thing as a proportional understanding of a situation. Alter- 

natively, one might rely on an additive schema to relate qualitative values. Or, an 

individual might postulate specific quantities to facilitate model construction, as in the case 

of reasoning about the fraction x/y above, or as in the case of saying that four-sevenths is 

close to one-half. But these are sophisticated strategies and would only result from a strong 

motivation to construct a quantitative mental model. More likely, without the pull of spe- 

cific quantitaties, one would just rely on empirical knowledge, if it were readily available, 

to understand qualitative relationships. 

Empirical knowledge joins into quantitative models by also providing information and 

constraints on mental model construction. One way this occurs is that empirical knowledge 

can ensure that some quantitative relationships remain invariant. For example, in the cur- 

rent studies, the children appeared to have tacit knowledge that the relationship between 

the concentrate and water would remain invariant through the pouring transformation. 

Empirical knowledge can also influence which quantities one chooses to measure or 

model. For example, the realistic displays led the children to think of juice primarily as a 

whole quantity rather than as a relationship between two sub-quantities. And, of course, 

empirical knowledge of the answer can constrain or usurp model construction altogether. 

All of these constraints are weak in the sense that a situation has many different empirical 

properties (as well as quantitative ones) that individuals may choose from as they attempt 
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to develop a coherent model of a situation. Mathematical and empirical knowledge interact 

to determine which constraints are put into play in a quantitative mental model. 

To develop our proposal with respect to the current data, we begin with the physical/ 

photo conditions and first consider the students’ model of the carton. According to the 

empirical constraint that juice be represented as a single entity, the students should not 

have constructed a quantitative model of the carton regardless of the available quantities; 

they did not have any ingredient quantities to relate. Combining this expectation with the 

proposed preference for quantitative specificity, we get a reasonable match to the data. For 

the non-numeric condition, the students avoided quantitative models and relied on “juice is 

juice” knowledge. For the hard glasses (4::7), the numerical relationship is multiplicatively 

difficult, so we would expect the children to either avoid making a model or rely on an 

additive schema. Our proposal does not provide clear guidance on which should have 

occurred. The results, however, showed that the children avoided making a model and 

answered same-taste, presumably because the physical/photo conditions called forth suffi- 

cient empirical knowledge that the students were not compelled to incorporate the hard 

numbers. Finally, for the multiplicatively specific 2::4 numbers, we should expect that stu- 

dents would model one glass as having twice as much juice as the other, because multipli- 

cative specificity is easy (and inviting) to model. 

In the diagram conditions, the students were less likely to think of juice as a single expe- 

riential entity. Nonetheless, they did heed the empirical constraint that the ratio of ingredi- 

ents was invariant among the containers. As before, the non-numeric condition would not 

be expected to lead to a quantitative model, and it did not. In the presence of numbers, due 

to the analytic pull of the diagrams, we should expect the children to make more efforts to 

accommodate quantitative information than in the physical/photo conditions. With the 

hard numbers, we should expect the children to attempt additive relationships and answer 

different-taste. This occurred with the 24::40 carton and 4::7 glasses. Interestingly, it also 

occurred with the 20::20 carton and the 4::7 glasses. This latter result fits our account 

assuming that the children did not have adequate tools to easily model the half-half rela- 

tionship in the 7 oz. glass, but did have tools to handle an additive, “3 more/less” relation- 

ship. Further research that manipulates or documents the children’s level of mathematical 

competence would be useful in this regard. Finally, for the 20::20 carton and 2::4 glasses, 

the children should have been able to model multiplicative relationships all around and 

reach a proportional understanding. It is interesting to note that in this condition, the chil- 

dren modeled the most information: the ingredient quantities in the carton, the ingredient 

quantities in each glass, the invariance of the ingredient ratio through the pouring transfor- 

mation, and the effect of ratio on taste. We can compare this to the physical 20::20 and 2::4 

condition where the students thought of the quantity of juice in the two glasses and its 

effect on taste, or the photograph 20::20 and 4::7 condition where the students only thought 

about the fact that the juice came from the same carton. Evidently, mathematical operations 

can help the students to use relationships that increase the amount of information they can 

model. 

Our description of quantitative mental models requires more evidence before it is useful 

to construct a predictive process model. One place to begin is with three of the central ele- 
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ments of our overall proposal: (a) models are constructed in working memory, (b) there are 

specificity constraints that help alleviate working memory demands, and (c) mathematical 

tools can aid in model construction by determining specific relationships and thereby 

reduce working memory demands. One way to evaluate the role of specificty is to provide 

people with a variety of scenarios that include specific and non-specific quantities. On a 

later memory test, people should recall the gist of multiplicatively specific relationships 

because they can construct meaningful models (Bransford, Barclay, & Franks, 1972), 

whereas they should recall non-specific quantitative relationships verbatim, if at all (Mani 

& Johnson-Laird, 1982). This type of experiment could include various types of specific 

relationships (e.g., 3::3,3::9,3::12) to see whether the specificity claim can extend beyond 

the halving and doubling relations used in the current studies. Using the same paradigm, 

one might explore the role of mathematical knowledge by using more sophisticated rela- 

tionships and manipulating prior knowledge. For example, imagine adults read a story 

about population growth. If they know about different types of exponential functions, then 

the use of specific and non-specific quantities should have more of an effect on their recall 

than on the recall of adults who do not know anything about exponential growth. With 

respect to working memory, it is important to get a sense of the number of models that peo- 

ple are constructing. For example, is it better to conceive of the students as making one 

model for the juice problem, or two models-one for the carton and one for the glasses. In 

our proposal, working memory demand decreases as one discovers specific symmetries 

(i.e., co-specifications), whereas in the mental model theory of deduction, working mem- 

ory demand decreases with fewer models (Johnson-Laird, 1983). It is not clear whether 

specificity and the number of models are separable dimensions of complexity. One way to 

examine this question is to provide a series of problems that systematically vary the num- 

ber and specificity of possible models. A nice candidate for use with adults is a problem 

involving two containers of paint. In phase one, 1 oz. from a 10 oz. container of red paint 

is thoroughly mixed into a 10 oz. container of white paint. In phase two, 1 oz. is taken from 

the modified white container and mixed into the red container. Will the two containers 

have inverse ratios of red to white paint? Informal observations indicate that many adults 

incorrectly believe that the two containers are not inverse ratios. They do not bother to con- 

struct a multiplicative model of the 1 oz. of paint that is moved during phase two. Yet, at 

the same time, it seems possible that solving this problem, or even understanding the expla- 

nation, would be more difficult if the quantities were non-numerical (non-specific). 

Developmental and Instructional Possibilities 

The sketch of quantitative mental models suggests an explanation for the development of 

proportional reasoning that does not assume a developmental increase in working memory 

or the growth of fundamentally new conceptual structures. Perhaps mathematical experi- 

ences lead to the development of mathematical tools. These tools enable children to sim- 

plify phenomena so that they can encode them within the working memory constraints of 

basic model structures. The challenge of proportional reasoning may not be found so much 

in a lack of conceptual structure or an immature working memory as it is found in the 

empirical complexity of proportional situations. Mathematical tools help simplify this 
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empirical complexity so that it may be understood within basic model structures. From our 

perspective, when children learn about percents, they do not develop a fundamentally new 

part-whole competence. Instead, they learn a cultural tool that can help them turn a com- 

plex situation into a multiplicatively specific one. Fractions, decimals, division, estimation, 

LCM, and so forth, give children a repertoire of mathematical tools that enables them to 

model the world into basic commensurable structures. 

The overall sketch of quantitative models generates some suggestions for improving 

instruction. Consider the familiar lament that children and adults, particularly in the con- 

text of word problems, disregard empirical constraints and resort to symbol pushing (e.g., 

Reusser, 1988; Silver, 1986). How might we overcome this problem in educational set- 

tings? 

First, given students’ limited repertoire of formal mathematical tools and the automatic- 

ity with which they can apply those tools, the numbers in problems are often too difficult 

to incorporate into a quantitative model. As a result, the student can either rely on remem- 

bered associations between mathematical operations and problem situations (cf. Moore, 

Dixon, & Haines, 1991) or haphazardly guess which symbol manipulation is most appro- 

priate. The numbers and the problem situation do not constrain one another at a structural 

level because the quantities are too complex to incorporate into a model that includes 

empirical information as well. Thus, our first suggestion is that instruction might rely more 

on simple numbers, or might continually help students map complex numbers and opera- 

tions into simpler ones. 

Second, instruction often treats mathematics as a computational recipe for “solving” an 

already understood situation. Statistical instruction is a notorious example. Students are 

often taught statistics as a general way to test hypotheses about the world, and rarely are 

they taught statistics as a way to understand and model structures in the world. Given the 

typical emphasis on the computational side of mathematics, it is little wonder that students 

do not always use mathematics to make sense of a situation. Instruction may be more effec- 

tive if students also learn about mathematics as a tool for structuring specific models of the 

world (e.g., Bransford et al., in press). Students should get a chance to see how such tools 

help solve problems of cognitive complexity and how they allow them to understand new 

aspects of their world. 

For example, imagine that we give college students two sets of numbers (e.g., 2-4-6-8 

vs. 4-5-5-6). We point out that the two sets have a similarity. We ask the students to notice 

that there is a single number for each set that helps determine this similarity-the average. 

This single number is easier to keep in mind and communicate than the total distribution. 

We then ask the students to come up with a method for determining a single number for 

each set that can capture what is different (i.e., the variances). After they invent their own 

methods, often a range formula like subtract the smallest number from the largest , we pro- 

vide new numbers that highlight other properties of distributions against which they can 

test their inventions (e.g., O-2-4-6-8 versus O-8-8-8-8, or O-2-4-6-8 versus 2-6). After sev- 

eral cycles of invention, testing, and revision, we ultimately provide the students with the 

conventional approach (e.g., standard deviation). Lessons like this help students “see the 

point” of the variance formula while they also help students differentiate the components 
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of the formula and its quantitative referents (cf. Schwartz 8z Bransford, in press). Seeing 

the power of a good formalism for aiding with complexity issues makes students more 

likely to use that representational tool in the future (Schwartz, 1993). Moreover, such les- 

sons help students notice the empirical properties that the tools were designed to help 

model. Preliminary results indicate that students who learn variance through this “semiotic 

invention to cultural convention” cycle are more likely to notice variance-related issues in 

real-world tasks like evaluating potential employees. If they hold up, these results would fit 

our overall story. Although mathematics is general and indifferent to empirical situations, 

it is the ally of the sciences because it provides powerful tools for finding, modeling, and 

understanding relationships in the material world. 
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