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Abstract 

One valuable goal of instructional technologies in K-12 education is to prepare students for 

future learning.  Two classroom studies examined whether Teachable Agents (TA) achieves 

this goal.   TA is an instructional technology that draws on the social metaphor of teaching a 

computer agent to help students learn.  Students teach their agent by creating concept maps.  

Artificial intelligence enables TA to use the concept maps to answer questions, thereby 

providing interactivity, a model of thinking, and feedback.  Elementary schoolchildren 

learning science with TA exhibited “added-value” learning that did not adversely affect the 

“basic-value” they gained from their regular curriculum, despite trade-offs in instructional 

time.  Moreover, TA prepared students to learn new science content from their regular 

lessons, even when they were no longer using the software.   

 

 

 

 

Keywords:  instructional technology; learning-by-teaching; concept mapping; preparation 

for future learning (PFL); science education; transfer 
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Adding Value with Technology 

If asked, many parents and educators would agree that incorporating technology into 

the curriculum is a good idea for schools. However, given the costs, there are concerns that 

computer technologies may fail to bring “added-value” to student learning, or worse, they 

may displace curricula that once provided “basic-value” (Clarke & Dede, 2009).  A second 

concern is that technologies may over-scaffold student learning, such that students do not 

learn to perform basic procedures on their own.  Consider, for instance, the debates over 

whether students should be allowed to use hand-held calculators in school (Ellington, 2003), 

and whether word-processing programs and spell-checkers have degraded writing skills 

(Galletta, Durcikova, Everard, & Jones, 2005).  

One way to differentiate whether students have benefited from versus become 

dependent on a technology is to examine whether they are better prepared to continue 

learning once the technology disappears.  For example, Bransford and Schwartz (1999) 

proposed an approach to assessment called “preparation for future learning” (PFL). A PFL 

assessment examines how well students learn given subsequent instruction or informational 

resources. In the context of evaluating whether a learning technology has been a useful 

scaffold, a PFL assessment would examine students’ abilities to learn once the technology is 

removed. In the positive case, students who once used the technology would be more 

prepared to learn than students who had never used it.  In the negative case, students who 

used the technology would not learn as well once it was removed. 

In the current research, we describe a technology called Teachable Agents (TA) that 

was developed, in part, to add value to paper-and-pencil concept mapping by providing 

learners with automated feedback.  We also explain the design rationale behind the TA. We 

then present a pair of added-value studies that included PFL assessments to see what new 

learning benefits TA might add.  The first study compared TA with a more traditional 
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concept mapping program. TA led to superior learning of causal relations, and it better 

prepared students to learn from a subsequent reading. The second study compared student 

learning from a well-established, kit-based science curriculum with and without the addition 

of TA. The teachers were free to implement TA as they chose. TA added value to instruction 

by improving student learning of causal relations without reducing the basic value provided 

by the science kits. TA also prepared students to learn more deeply from a subsequent month 

of instruction on a completely new topic when the students were no longer using the 

technology.  We conclude by considering the source of this effect, and the possibilities of 

using PFL assessments for other technologies including software games. 

Teachable Agents 

Two Paths to Added-Value 

 Concept maps are graphical representations of a person’s topical understanding. The 

maps consist of labeled nodes and links that represent a web of propositions (Novak, 2002; 

Novak & Gowin, 1984). Concept maps have proven to be a useful paper-and-pencil 

technology for improving knowledge retention and integration (for reviews, see Hilbert & 

Renkl, 2008; Horton et al., 1993; Nesbit & Adesope, 2006; O’Donnell, Dansereau, & Hall, 

2002).  How might technology add value to concept mapping? 

 One approach is the development of productivity tools that capitalize on the 

computer’s capacities for editing, organizing, storing, sharing, and printing.  Inspiration
®

 is 

an example of a concept mapping program used widely in schools (www.inspiration.com).  It 

contains a simple interface for structured map-making and a suite of productivity tools, 

including automated untangling of concept maps and the ability to incorporate images and 

hyperlinks for nodes.   
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 A second approach is to further recruit the computer’s potential for generating 

interactive feedback for learners. We have taken this latter approach in creating Teachable 

Agents (TA).  Students learn by teaching a computer character. The students create the 

concept map that is the character’s “brain,” and they receive feedback based on how well 

their computerized pupil can answer questions.   

[Figure 1.  TA Main Interface] 

Interactivity with Teachable Agents 

 Figure 1a shows the main TA teaching interface. Students teach their agent by adding 

nodes and links using the “Teach” buttons. To add a concept, students click on “Teach 

Concept,” which produces a textbox in which they enter the name of the node.  To create a 

link, students click on “Teach Link” and draw a line connecting two nodes. Next, the palette 

in Figure 1b appears, and students use the palette to name the link.  They must also specify 

the type of link, which can be “causal,” “type-of,” or “descriptive.”  If students choose a 

“causal” link, they must further specify whether an increase to the first node causes an 

increase or decrease to the second node (e.g., landfills increase methane).   In the following 

studies, these causal links are of particular importance, because they were the main source of 

feedback.  

 To provide feedback and enhance the teaching metaphor, TA comes with a qualitative 

reasoning engine (see Forbus, 1984; Jackson, Krajcik, & Elliot, 1998).  The engine uses path 

traversal algorithms that enable the agent to reason through causal chains in the concept map 

(Biswas, Leelawong, Schwartz, Vye, & TAG-V, 2005).  For example, Figure 1c shows the 

palette by which students can ask their agent a question.  In this example, the student has 

asked the agent, “If ‘methane’ increases, what happens to ‘heat radiation’?”  Figure 1a shows 

how the agent highlights successive nodes and links in the concept map to illuminate the 

chain of inference it uses to answer the question.  In this case, the agent has reasoned that an 
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increase in methane decreases heat radiation.  It did so by following the path that methane is a 

type of greenhouse gas; greenhouse gas is a type of insulation; and an increase in insulation 

decreases heat radiation.  The agent has also described this chain of inference in the lower 

text panel of Figure 1a.  In this manner, students can trace their agent’s thinking, both as a 

model of causal reasoning, but also as a way to see if the agent has learned what they think 

they taught it. 

 A second source of interactive feedback compares agent answers against a hidden 

expert map entered by the teacher.  Students can submit their agent for testing by clicking on 

the “Quiz” button (Figure 1a, lower left corner). Questions in the quiz can be seeded by the 

teacher or generated automatically. The agent’s answers are compared to the answers 

produced by the expert map and students get feedback on how their agent did. The TA’s 

lower panel displays the list of quiz questions and indicates which ones the agent answered 

correctly.  For incorrect answers, the system does not provide the student the correct answers, 

but instead gives more elaborated feedback and hints, for example, “A link or more is 

missing from your map.  The Resources is a good place for more information.”  

 

[Figure 2.  Other TA-Affiliated Technologies] 

 

 The automated scoring of the concept map creates additional possibilities for 

feedback. Figure 2a shows the All-Possible-Questions matrix which tests the agent on every 

possible question for a given map.  The color-coded grid structure provides students quick, 

comprehensive feedback on how their agent is doing: green for correct answers and red for 

incorrect. Importantly, the yellow cells indicate where an agent gave the right answer but for 

the wrong reason. That is, the system detects that the agent has missing or incorrect links, but 

still happens to give a correct answer for a particular question.  Figure 2b shows the Front-

Of-Class software designed to provide formative feedback for class discussion.  The teacher 
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can use this software with a projector and screen to show multiple agent maps at the front of 

the room. The teacher can simultaneously ask all the agents the same question. This display 

also uses the red, green, and yellow highlighting to indicate how each agent did on the 

question, which helps the teacher identify problem areas. The teacher can also “zoom in” on 

an agent to animate its reasoning for additional class discussion.  Compared to the clickers 

used in many college classrooms, the Front-of-the-Class software provides a new model for 

class level formative feedback and discussion (Burnstein & Lederman, 2001; Judson & 

Sawada, 2002).  

 Figure 2c shows another application of interactive feedback. It is a screenshot of an 

Internet homework system called the Game Show. Students can log on from home or school 

to teach their agents, chat with other students on-line, and have their agents participate in an 

on-line game with other students’ agents. During the game, a host asks agents to answer 

questions on the material.  Students have a brief moment after each question to decide how 

much to “wager” on their agent, before it gives an answer.  The wagering feature was 

designed as a prompt for students to reflect on how their agent would answer questions, thus 

reflecting on their own teaching and learning.  Further details about these features may be 

found in Schwartz et al. (2009) and the software is available by contacting the authors. 

The Teaching Metaphor 

 Before describing the two added-value studies, we explain the rationale for the 

metaphor of teaching an agent.  TA belongs to a class of instructional technologies called 

pedagogical agents, where students interact with a graphical character.  Unlike other 

pedagogical agents, which primarily play the role of coach or peer (see Baylor, 2007), TA 

takes the role of pupil.  Why did we include the fiction of teaching a character, given that the 

interactive feedback does not require it?  
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 One reason is that the teaching metaphor allows students to use the familiar teach-test-

remediate schema for self-organizing their interactions and interpreting feedback. In a typical 

“teaching session,” students first read resources or complete other relevant learning activities. 

They then teach their agent a few nodes and links based on what they have learned.  They ask 

their agent questions and have it take a quiz.  If the agent does well, they add more nodes and 

links.  If the agent does poorly, they use available resources to check their own understanding 

and then make changes to the map.  

 Of course, there is also the potential for a less effective learning scenario. Students 

may use trial and error until the agent gives a correct answer to a quiz question.   The 

potential for trial and error is one reason to examine preparation for future learning. It is 

possible that students overuse the interactivity and feedback to stumble into correct concept 

maps without actually learning anything useful. 

 A second reason for the teaching metaphor is to capitalize on the growing research 

base that generally shows positive results from learning-by-teaching (Annis, 1983; Biswas et 

al., 2005; Renkl, 1995; Roscoe & Chi, 2008).  For example, people learn better when they 

prepare to teach someone who is about to take a test, compared to when they prepare to take 

the test themselves (Bargh & Schul, 1980; Biswas et al., 2001).  They try harder to organize 

their understanding for the task of teaching another person than they do for themselves 

(Martin & Schwartz, 2009). In the context of technology, the teaching metaphor can enlist 

fruitful social attitudes during interaction, including a sense of responsibility for one’s pupil. 

For example, Chase, Chin, Oppezzo, and Schwartz (2009) had students use identical TA 

software. In both conditions, students designed the graphical look of their character; they 

created the concept map; and they used the interactive feedback. The difference was that in 

one condition, students were told the character was an agent they were teaching, and in the 

other condition, students were told the character represented them. Students who thought they 
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were teaching engaged in more learning relevant behaviors on behalf of their agent and 

demonstrated deeper learning at posttest.   

 A third reason for using the teaching metaphor involves metacognition (see Hacker, 

Dunlosky, & Graesser, 2009). As the TA visibly reasons through its concept map, students 

can reflect on the structure of their agent’s reasoning. Students are applying metacognition, 

but in this case, the metacognition is about their agent’s thinking rather than their own.  TA is 

specifically designed to highlight chains of qualitative causal reasoning, for example, that an 

increase in cars can cause an increase in flooding through the intermediary causes of 

atmospheric change and global warming. Ideally, metacognition about their agent’s causal 

reasoning improves students’ own abilities to think with and learn about causal chains.  The 

current research examines the hypothesis that TA improves students’ abilities to learn causal 

relations in science, both when using the software and afterwards, once the TA is removed. 

 

Study 1: The Added-Value of Interactivity 

 Prior work has compared variations of the TA system (Biswas et al., 2005).  In the 

studies described here, rather than trying to isolate variables within our own technology, we 

compared the TA system to other instructional approaches.  In Study 1, two classes of 6
th

-

grade students learned about global warming over the course of three weeks.  They received 

matched curriculum and lessons. The difference was whether they organized what they 

learned using TA or the concept mapping program, Inspiration.  

 One research goal was to examine what type of learning TA produced.  We do not 

intend to claim that TA is better than Inspiration, which has its own strengths as a 

productivity tool. Rather, we wanted to investigate the hypothesis that TA would help 

children learn to think through chains of causal reasoning. To find out, we assessed students 
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at regular intervals during the global warming unit on how well they reasoned about causal 

relations.   

 A second goal was to gather initial evidence on whether TA prepared students for 

learning new content once the technology was removed.  After completing the treatments, the 

two groups of students were given an opportunity to learn a related topic, but without support 

from the technologies.  This PFL assessment did not involve the far transfer of learning 

completely new content, which is examined in Study 2.  Instead, students had to integrate 

new content that was relevant to their previous lessons. 

Methods 

Participants 

 Two 6
th

-grade classes from a high SES school with the same science teacher 

participated. All students had broadband access at home, and students in both classes had 

previously used Inspiration.  Logistical constraints required that the two classes be randomly 

assigned intact to either the TA condition (n = 28) or the Inspiration condition (n= 30).  The 

principal reported that the school matched classes on ability, but we did not have access to 

measures of prior achievement.  Instead, we administered a pre-test on the first day of the 

study, before any instruction was given. 

Procedures 

 Students completed a three-unit course on the mechanisms, causes, and effects of 

global warming.  The course supplemented a short section in the school’s 6
th

-grade science 

textbook. Instruction consisted of 11 lessons over a period of three weeks.  For each unit, 

both classes completed learning activities that included readings, videos, hands-on 

experiments, and classroom discussion. To ensure consistent, matched instruction, the 

researchers taught both classes throughout. After each basic unit, students either worked with 
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Inspiration or taught their agents in the TA system. In both conditions, students made causal 

links among pre-determined nodes to help them organize the content from the other 

instructional activities, and they received homework assignments to further edit their concept 

maps. Figure 3 shows the ideal final map partitioned to indicate the nodes introduced in each 

unit.   

[Figure 3. Global Warming Map] 

Design 

 The main comparison was between the effects of Inspiration versus TA on causal 

reasoning.  In the TA condition, various feedback features of the technology were introduced 

across the units. For Unit 1 (Mechanisms), students used the Quiz feature as they made their 

initial maps.  For Unit 2 (Causes), students used the Quiz feature as they incorporated the 

new nodes for this unit into their global warming map, and the teacher used the Front-of-the-

Class display to lead a discussion, after which students could revise their maps.  For Unit 3 

(Effects), the students updated their maps with the new nodes and played the Game Show in 

class and at home.  

 We tried to match each feature for the Inspiration condition.  For example, when the 

quiz feature was enabled for the TA students, the Inspiration students had an identical paper-

and-pencil version of the quiz for themselves.  When the instructor led map-based 

discussions, she used the Front-of-Class display with TA students and used Powerpoint slides 

of student maps with Inspiration students.  For the Game Show, the TA students wagered on 

their agents answering the questions, and the Inspiration students played a modified version 

of the Game Show in which they answered the questions themselves (using a pull-down 

menu to indicate increase, decrease, or no change), and they also wagered on their own 

answers. 
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 In addition to the between-subjects factor of Inspiration versus TA, there were two 

within-subject factors, time of assessment and length of causal inference required to answer 

questions. Over time, the students were given four assessments, a pre-test with 24 short-

answer, paper-and-pencil questions from across the curriculum, and three end-of-unit tests 

that included eight short-answer, paper-and-pencil questions. Each test included questions at 

three levels of complexity: short, medium, and long chains of causal inference. This created a 

design of 2 conditions (TA, Inspiration) x 4 tests (days 1, 5, 7, 11) x 3 levels of question 

complexity (short, medium, long).  Length of causal inference was determined by how many 

causal steps were needed to explain the correct answer (e.g., number of links in the expert 

map).  Short chains were between 1 to 2 causal steps, medium chains were 3 steps, and long 

chains were 4 steps or greater.  (Instructional materials and tests are available upon request.)  

Example questions include: 

• Short Chain: What does insulation do? 

• Medium Chain: How would global warming affect the rate of plant and animal 

extinction? 

• Long Chain: Explain why the number of cars in America may influence the 

number of floods around the world. 

 In the final 40 minutes of the study, students also completed a PFL assessment. They 

saw a short video about things that individuals and communities have done to reduce global 

warming.  Students then received a one-page text that described things they could do to help 

prevent global warming.  They were given four starter nodes, and their assignment was to 

construct a paper-and-pencil concept map of the text passage. Concept maps are often used to 

assess student understanding (e.g., Ruiz-Primo & Shavelson, 1996; Taricani & Clariana, 

2006). In this case, the question was whether there would be differences in how well students 

integrated this new content into their representation of the topic.   



PREPARING STUDENTS FOR FUTURE LEARNING 

p. 13 

Results 

Causal Understanding 

 Students’ answers to the causal questions were scored on how well they explained the 

causal chain of inference: 0 points (incorrect or no answer), ½ point (partially correct 

answer), or 1 point (correct answer).  Below are sample answers and scores for the question 

“Explain why the number of cars in America may influence the number of floods around the 

world”: 

• 0 points:  “It uses up gas.” 

• ½ point:  “Cars give off CO2 which makes it hot and creates floods.” 

• 1 point:  “The cars will burn fossil fuels which will produce carbon dioxide 

which will join the atmosphere which will heat the earth up which will melt 

the glaciers which will increase the sea level which will increase floods.” 

 Inter-rater reliability was determined by having two separate coders score 20% of the 

tests at random. Pearson correlations between the coders ranged from .90 to .92 across the 

tests.  Cronbach’s alpha for reliability across tests was .79.  The following analyses used each 

student’s mean score for the short, medium, and long chain questions for each assessment, 

yielding 12 data points per student (3 problem types by 4 assessment times). 

 

[Figure 4.  Graph: Condition by Time by Question Length] 

 

 Figure 4 shows the average score per question broken out by condition, time of test, 

and the length of inferential chain needed to answer the question. At pretest and after the first 

instructional unit, the two groups are similar. After the second unit, the TA students show an 

advantage for the medium-length inferences.  By the final unit, the TA students show an 
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advantage for short, medium, and long inferences.  Our interpretation of this pattern is that 

the TA students were getting progressively better at reasoning about longer and longer chains 

of inference in the context of global warming.  The following provides the relevant statistics. 

 To rule out pre-existing differences, we first submitted the pretest data to a repeated-

measures analysis of variance crossing the between-subjects factor of condition by the 

within-subject factor of inference length. The conditions were not significantly different; F(1, 

56) = 1.5, p > .2.   

 To test the effect of treatment, we conducted a 2 x 4 x 3 analysis of variance with the 

between-subjects factor of condition crossed by the within-subject factors of time (four time 

points) and inference length (short, medium, long).  Only students present at all test points 

were included (TA n = 26, Inspiration n = 27).   

All three factors showed main effects, which should be interpreted in light of 

significant interactions.  There was a main effect for time, indicating that students improved; 

F(3, 49) = 76.4, p < .001.  There was a main effect of inference length, indicating that the 

separation of questions into short, medium, and long chain inferences correctly reflected 

problem difficulty; F(2, 50) = 77.5, p < .001.  And finally, there was a main effect for condition, 

indicating that the TA system led to superior performance; F(1, 51) = 4.2, p < .05.    

The 2-way interactions clarify the TA effect. TA students improved more over time 

than the Inspiration students; F(3,49) = 3.1, p < .05. There was also a two-way interaction of 

condition by inference length, indicating the TA students did relatively better on longer 

causal chains; F(2, 50) = 4.2, p < .05.  Finally, there was a time by inference length interaction 

indicating that students in both groups did progressively worse on short-chain inferences and 

progressively better on long-chain inferences; F(6, 46) = 12.9, p < .001.  Our best explanation 

for the drop in short-chain performance is that we inadvertently made the short-chain 

questions more difficult in the later assessments.  The three-way interaction, condition by 

time by inference length, was not significant; F(6, 46) = 1.0, p > .4. 
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The best estimate of effect size comes from the final unit test, because this occurred 

after the full course of the two treatments.  A separate analysis of variance crossed treatment 

by question type for this final unit test. The effect size of the TA treatment over Inspiration is 

d = .52; F(1, 51) = 13.6, p < .001. 

Preparation for Future Learning 

 During the last session, students constructed paper-and-pencil concept maps on their 

own, given a new, one-page text passage on the prevention of global warming.  These PFL 

maps were coded for (a) total number of concepts included, (b) number of concepts from the 

passage, and (c) number of passage concepts integrated with valid causal paths.  Two raters 

coded a subset (20%) of the maps, resulting in one coding disagreement.  A primary rater 

then coded the remaining maps.  Figure 5 shows a sample student map and the coding 

scheme. 

 

[Figure 5. PFL example] 

  

 Students in both conditions added roughly four concepts to the starter nodes provided.  

The TA students included an average of 3.2 concepts from the passage compared to 1.3 for 

Inspiration students; t(49) = 4.2, SE = 0.43, p < .001, d = .61.  Additionally, the concepts added 

by the TA students were better integrated, with more correct causal paths. The TA condition 

showed twice as many appropriately linked nodes (2.5) compared to the Inspiration condition 

(1.2), t(49) = 3.2, SE = .43, p < .01, d = .45.  Overall, the students’ paper-and-pencil concept 

maps indicated that the TA condition better prepared students to develop an integrated 

understanding of the reading passage, even when they were no longer using the interactive 

technology as support.   
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Discussion 

Over three weeks, two classes of students worked with either TA or Inspiration.  

Students received identical information about global warming delivered in identical ways. The 

difference was how they used technology to organize and receive feedback about the ideas 

they learned. The Inspiration condition used a productivity-focused tool, and feedback was 

necessarily provided outside the tool.  The TA condition used the social metaphor of teaching 

to organize computer interactions, and provided automated feedback to students through the 

lens of their agent’s understanding. 

 Early in the intervention, both treatments exhibited similar levels of understanding, 

and both groups did much better with inference questions involving shorter causal chains. 

Over the course of instruction, TA students demonstrated relative gains in their abilities to 

draw inferences through longer causal chains in the context of global warming. This makes 

sense because the TA’s organization and reification of knowledge portrays reasoning through 

causal chains.   

 The PFL assessment results suggest that students adopted their agent’s reasoning 

patterns and ways of organizing knowledge. On this assessment, students from both 

conditions received an identical learning task: integrate new content from a text passage 

without technological support. The TA students causally integrated more passage-relevant 

concepts in their paper-and-pencil concept maps.  The greater number of integrated nodes in 

the TA condition indicates that TA students had connected the concepts into potential chains 

of inference.   

 Based on this study, the PFL effect could be the result of the TA students having a 

better grasp of global warming from the prior units of instruction, or it could be that the 

students had a better grasp of causal integration and used it to make sense of the new 

material.  The next study examines this question more closely by seeing if TA prepared 
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students to learn new content that was topically unrelated to what they had studied with their 

agents. 

 

Study 2:  Added-Value to a Standard Curriculum  

 Study 1 was of relatively short duration and was taught under the strict edicts of the 

research design; additionally, researchers took the lead instructional roles and used specially-

created content.  The study demonstrated that TA is particularly useful for developing an 

integrated understanding of causal chains.  Study 2 was designed to see how TA would fare 

in a more complex ecology of instruction, in which school teachers used TA to complement 

their regular curriculum. Six 5
th

-grade teachers integrated TA into their district-adopted 

science-kit curriculum as they saw fit, over a period of several months. We were interested in 

three questions. First, would TA produce added-value gains, as evidenced by improved 

student performance on researcher-designed measures of causal reasoning?  Second, would 

there be a change in basic-value as measured by the curriculum’s own assessments? And, 

third, once the TA technology was withdrawn, would the students be more prepared to learn 

from their standard curriculum on a new and unrelated science topic? 

 The experiment used a cross-over design. Three teachers used TA for a science kit on 

biological systems, and then stopped using TA for the subsequent kit on earth science. The 

other three teachers worked without TA for the biology kit, but then did use TA for the 

subsequent earth science unit.  Our prediction was that students who first used TA to learn 

about biology would learn to think in terms of causal chains. This causal thinking would 

benefit their subsequent learning of the non-overlapping content in the earth science unit, 

even though they were no longer using TA. 
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Methods 

 A small, local school district agreed to use the TA technology to complement their 

regular science curriculum in the 5
th

-grade.  The district used the Full Option Science System 

(FOSS), developed by the Lawrence Hall of Science (www.lhsfoss.org).  FOSS kits come 

complete with teacher guides, textbooks, videos, hands-on activities, worksheets, and 

assessments.  

Participants 

 The study involved six teachers and 134 5
th

-grade students (104 with permission to 

analyze their data) who were assigned to one of two conditions, TA-1
st
 or TA-2

nd
.  To 

determine if there were pre-existing student differences in the two conditions, we used all 

available achievement data. A multivariate analysis compared students’ 4
th

-grade math and 

reading scores on the California STAR assessment (www.cde.ca.gov/ta/tg/sr/). STAR does 

not include a science test for this age, so our analysis also incorporated scores from the 

FOSS-developed pretest that comes with the first kit. There were no pre-existing differences 

between the two conditions; F(3, 86) = .056, p > .95; all univariate F’s < .25 

Design 

 The district-wide schedule required that teachers use the Living Systems kit (LS) in 

the winter and the Water Planet kit (WP) in the spring.  In the winter, the three classrooms in 

TA-1
st
 condition integrated TA with the LS kit. The three classrooms in the TA-2

nd
 condition 

used the LS kit as they normally would.  In the spring, the TA-2
nd

 condition used TA for the 

WP kit, while the TA-1
st
 condition covered WP without the technology, completing a cross-

over design in the use of TA. 

 State testing plus end-of-year school events yielded different durations for the two 

kits. The teachers had approximately 10 weeks for LS and 5 weeks for WP.  For the LS kit, 
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the teachers covered three sub-units: Human Body, Vascular Plants, and Photosynthesis & 

Cellular Respiration.  For the WP kit, the teachers covered the unrelated and extensive Water 

Vapor unit.  These differences had implications for the amount of data we could collect for 

each unit, as described next. 

 The FOSS kits come with summative assessments for each sub-unit, which served as 

the measure of “basic-value” to determine whether TA displaced or augmented the intended 

goals of the original curriculum. The tests contain multiple-choice, fill-in, and short-answer 

questions (FOSS tests may be requested at lhsfoss.org/components/general/k8sys.html).  We 

sorted the FOSS items into four categories based on their use of “prompt” words:  Why 

questions asked about causal inferences; How questions probed internal mechanisms; What 

questions tested factual recall; and Data questions asked students to interpret charts or tables.  

Examples from the Living Systems kit include: 

• Why: “Why is it important to filter waste materials from the blood?” 

• How: “Describe how water in the ground travels to the leaves at the top of a tree.” 

• What: “Which side of the heart pumps oxygen-rich blood to the body?”  

• Data:  “How do the data show that plants produce their own food?” [A table showed 

starting and ending masses of plants grown under different experimental conditions.] 

 At the end of each sub-unit, we also appended four “added-value,” short-answer 

questions to the FOSS assessments.  These added-value questions tapped the types of causal 

reasoning modeled by TA.  For example, one question asked,  

• “You go on vacation and forget to ask someone to water your house plant. What 

happens to the plant’s level of starch storage while you are gone? Explain your 

reasoning.”  
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The teachers did not see these added-value questions beforehand, so they could not teach to 

them. As a fuller example, Appendix 1 shows the four questions for the sub-unit on the 

Human Body. 

 

Procedures 

 All the teachers were trained on TA in a one-day, in-service workshop.  When the 

teachers used TA with their students, they were free to implement the tools within the TA 

system differently.  Teachers used TA at different points in their lesson plans and some 

preferred one feature over another. For example, one teacher preferred to use TA as a 

summative exercise for each sub-unit and encouraged extensive use of the Quiz feature.  

Another teacher preferred shorter, more interspersed TA sessions throughout each sub-unit 

and allowed more Game Show play for her students.  Throughout the study, each teacher 

received as much technical and curricular support as she wanted for her TA lessons. Overall, 

TA-1
st
 students averaged eight total mapping sessions (337 min of TA-instructional time), 

TA-2
nd

 students approximately five (275 min). 

 Unlike the previous study, in which students worked on a single, cumulative map for 

their agents, separate concept maps were designed to complement the different sub-units in 

the FOSS curriculum.  Four expert maps were created for the LS kit and two maps for the 

WP kit (see Appendix B).     

 Because TA was built for use over the Internet, we were able to collect usage data 

whenever and wherever students used the system. We conducted exploratory stepwise 

regressions to determine whether increased usage of TA was correlated with better added-

value learning outcomes.  
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Results 

 All learning assessment items were scored on a scale of 0 to 1.  Answers received 0 

points (incorrect or no answer), ½ point (partially correct answer), or 1 point (correct 

answer).  Inter-rater reliability, using a random subset of at least 20% of the answers for each 

item, exhibited Pearson correlations of greater than .92 for all tests.   The reliability across the 

added-value tests (Cronbach’s alpha = 0.81) matched the reliability of the FOSS basic-value 

items (Cronbach’s alpha = 0.76).    

Because teachers chose to complete the LS sub-units in different orders, and because 

the WP implementation used fewer sub-unit tests than LS, the following analyses use 

students’ average question performance for each kit, rather than breaking out performance by 

sub-unit.  

 

[Figure 6.  Added-Value Scores for Kits 1 and 2] 

Added-Value and Preparation for Future Learning 

 Figure 6 shows the average added-value question score broken out by condition and 

science kit.  A repeated-measures ANOVA compared average within-subject performance on 

the LS and WP added-value questions crossed by the between-subjects factor of condition.  

The two-way interaction evident in Figure 6 was significant; F(1,96) = 4.7, p < .05.  The 

interaction indicates that students improved once they used the TA software. It also indicates 

that the TA-1
st
 students maintained their level of performance from the LS kit to the WP kit, 

even though they were no longer using the technology.  

 Breaking out the effect, we first consider results for the LS kit, which is when the TA-

1
st
 condition used TA, and the TA-2

nd
 condition did not.  A separate ANOVA compared the 

effects of TA-1
st
 versus TA-2

nd
 conditions on the students’ added-value scores.  The TA-1

st
 

condition did better; F(1,101) = 5.2, p < .05, d = .23. Moreover, the mean scores for each of the 
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three TA-1
st
 classes were higher than the means for each of the three TA-2

nd
 classes.  TA 

provided consistent added-value for the 5
th

-graders, despite natural variability in the ways 

teachers used the software and taught their classes.  

 We next examine the results from the WP kit, for which the TA-2
nd

 condition started 

using the technology and the TA-1
st
 condition stopped.  The TA-2

nd
 condition improved on 

the added-value questions once they used the software. The effect size for the TA-2
nd

 gain 

from LS to WP questions was d = .68.   (The effect size is larger for this comparison, because 

it is within-subjects rather than between.) 

Basic-Value 

 One concern was that TA might detract from the basic-value of the FOSS kits.  To 

examine this issue, we analyzed the students’ performance on FOSS’s own summative tests. 

The analysis is confined to the LS kit, because several of the teachers chose not give the 

FOSS tests for the WP kit. 

 

[Figure 7 – Mean Score on Basic-Value Item Types] 

 

 Figure 7 shows that the TA-1
st
 students did better specifically on Why questions, with 

no condition differences for the other three question types. A 2 x 4 repeated-measures 

ANOVA, crossed the two conditions with the four question types.  The performance 

differences on the Why questions drove a significant two-way interaction of condition by 

question type; F(3, 99) = 6.6, p < .001. Taking the Why questions separately, the treatment 

effect was d = .40.   Thus, TA did not reduce students’ learning of basic FOSS material, and 

TA did improve it for the Why questions.  The TA benefit on the Why questions fits the 

general pattern across both studies, because these questions asked students about cause-and-

effect relationships. These results also show that the learning gain of TA-1
st
 is not simply due 
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to better students, time on task, or other unidentified variables.  If these variables had been 

responsible for the learning gains, then there should have been superior performances across 

all the items, and not just the cause-effect questions. 

TA System-Use and Learning 

 The preceding analyses compared experimental treatments to determine TA 

effectiveness.  A complementary approach is to look for effects within the TA treatments.  If 

the technology is responsible for improved learning, then we should expect to see “dosing 

effects” – students who more frequently use productive elements of the software should learn 

more.  The following analyses were post-hoc explorations, because we were unsure which 

aspects of the TA system would be especially useful for learning if used more frequently.  

We conducted two multiple regressions to predict students’ added-value scores using 

metrics of how often students used features of the system (mapping sessions, map edits, 

asking the agent a question, submitting an agent to a quiz, Game Show sessions, chat 

messages, reading on-line resources on the topics).  One regression predicted TA-1
st
 student 

performance on the LS kit, because this was when these students used TA. The second 

regression predicted TA-2
nd

 performance on the WP kit, because this was when these 

students used TA.  For each regression, we followed a two-step approach. In the first step, we 

forced the STAR scores into the regression equation.  This statistically controlled for the 

possibility that correlations between greater system use and greater learning performance 

were due to prior achievement rather than a direct relation between amount of system use and 

learning. The second step to building the model used a stepwise regression to determine 

which system-use metrics, if any, predicted added-value performance.   

For TA-1
st
 students, the stepwise regression found that the number of map edits 

predicted performance on the added-value questions; F-Change(1, 40)  = 4.4, p < .05, change in 

r
2
 = .06; final model, F(3, 40 ) = 10.9, p < .001, R

2 
= .45.  For TA-2

nd
 students, the number of 
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quizzes entered the equation; F-Change(1, 40) = 7.2, p = .01, change in r
2
 = .12; final model, 

F(3, 40) = 6.4, p < .01, R
2 

= .33.    While the number of edits predicted learning for TA-1
st
 

students, and the number of quizzes predicted learning for TA-2
nd

, it is useful to note that 

quizzing and editing are highly correlated (r = .70) and block entry of one another into the 

stepwise regressions. Results from both conditions suggest that greater TA use led to greater 

learning. 

Discussion 

 Teachable Agents was integrated into the variability of regular classrooms over 

several months, where teachers chose how to use the software as an added-value to their 

normal instruction.  Students who used TA first exhibited a deeper causal understanding of 

the material, as measured by the added-value tests and the Why questions in FOSS’s own 

basic-value assessments.  The TA activities did not displace basic learning from the FOSS 

kit.  Moreover, the degree to which students used the map editing or feedback features 

correlated with learning, even after controlling for prior achievement.  

 After the cross-over, the TA-2
nd

 students caught up on the added-value measures once 

they were using TA. The TA-2
nd

 data provide a within-subject comparison that indicates that 

students did better, relative to themselves, when they used TA.  This result complements the 

between-subjects finding for the first science kit that using TA provided added-value 

compared to not using TA. It also complements the findings in Study 1. 

 The TA-1
st
 students did not use TA for the WP kit, but their causal learning 

maintained at a relatively high level. Our preferred interpretation is that the students had 

learned to think in terms of integrating causal chains during the LS kit, and were able to 

continue learning in terms of causal chains during the non-overlapping WP content, even 

without the on-going support of their agents.  They had been prepared for future learning by 

using the TA technology.  
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 There are, however, alternative interpretations of the PFL findings.  One alternative is 

that the conditions did equally well on the WP assessment because it was an easier test.  By 

this account, the TA-2
nd

 condition had not learned causal paths using TA, but because the WP 

test was easier, it looks like they improved compared to the LS test. And, although the TA-1
st
 

condition appeared to hold steady, they actually regressed, because they should have done 

better on the easier test.   

 While always possible and not to be discounted, this interpretation loses force when 

considering the results as a whole.  One leg of this alternative interpretation is that the WP 

test was easier.  However, the reliabilities across the LS and WP tests were high, and the 

within-subject gains of the TA-2
nd

 students (across the two kits) closely resemble the 

between-subjects gain of the TA-1
st
 students over the TA-2

nd
 students (on the first kit before 

the cross-over).  The second leg of this alternative is that the TA-2
nd

 students did not learn 

causal integration for the shorter WP unit.  However, both Study 1 and the results from the 

LS kit indicate that students improve causal integration when using TA.  Therefore, it seems 

unlikely that the TA-2
nd

 students would not learn, given that they spent over four and a half 

hours using the software across multiple sessions. More directly, when we regressed system 

use on learning, we found that TA-2
nd

 students who used the system more effectively also 

learned more, in much the same pattern as for the TA-1
st
 students.  Thus, students in the TA-

2
nd

 condition did learn.   

A second alternative interpretation is that the TA-1
st
 students did well on the WP unit 

because the teachers had learned to emphasize causal integration when using TA, and this 

continued even after they stopped using the technology.  This is a desirable outcome, because 

preparing teachers for future teaching would be a good accomplishment of any technology.  

However, our observations do not support this alternative.  Field notes indicated that TA-1
st
 

teachers did not use concept mapping for the WP unit and did not use causal reasoning more 

in their teaching.   
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General Discussion 

There are many valid concerns for the adoption of new learning technologies: What 

will it cost in terms of school budgets and teachers’ start-up times?  Will it displace “basic-

value” learning from existing curriculum?  Will it provide any “added-value” that is 

measurably beneficial to students?  Will technology over-scaffold student learning, leaving 

students unable to perform once the technology is taken away? Our studies show one way to 

address these learning concerns is by measuring both added-value and basic-value learning 

when students are using the technology, and by examining subsequent learning when the 

technology has been removed.  

 Teachable Agents (TA) is an instructional technology that capitalizes on the social 

metaphor of teaching to engage students in learning.  The TA system adds interactivity and 

feedback to concept mapping. Two classroom studies using TA with upper-elementary 

schoolchildren showed that students exhibit a better understanding of content-specific causal 

reasoning and longer chains of inference.  The second study, which integrated TA into the 

standard science curriculum, showed that this added-value learning did not adversely affect 

basic-value learning, despite instructional time “lost” to TA.  Indeed, TA appeared to support 

additional basic-value as measured by the curriculum’s own Why assessments.  Both studies 

also provided evidence that these learning benefits can persist when the children are learning 

new content without the support of the technology.  In particular, Study 2 showed students 

transferred their understanding of causal reasoning from the domain of biology to help learn 

in the unrelated domain of earth science.  However, it is important to acknowledge that the 

evidence, while strong, is not definitive. Both studies had to randomly assign intact classes to 

treatment rather than randomly assign students. Also, Study 2 would have been logically 

stronger if it had been possible to include a baseline condition that never received TA at all. 
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We did control for these weaknesses statistically, for example by using pretest and 

standardized achievement measures. In addition, we identified that the learning effects are 

specific to causal integration and not other content included in the curricula.  But, as always, 

experimental conclusions are tentative pending replication.  

 In the meantime, our explanation for the cause of the transfer effects is that TA 

provided an explicit model of causal thinking, which helped students develop their own 

causal reasoning (Collins, Brown, & Holum, 1991). TA did not teach children how to learn in 

general, for example, by taking notes or explicitly self-explaining. Instead, TA provided them 

with the powerful and integrative idea of causal chains in science.  We know that students 

already have causal schemas (Gopnik & Schulz, 2007), and as Nisbett et al. (1983) found in 

the context of statistical reasoning, instruction that maps into pre-existing ways of reasoning 

has a better chance of transfer.  The lessons on causal chaining transferred because they 

amplified a natural and useful way of thinking about science content.  Moreover, the 

interactivity allowed students to reflect on their agent’s thinking and accuracy, and by proxy, 

they applied metacognition to their own understanding to help develop a grasp of causal 

chains (Schwartz et al., 2009).  Research has shown that tutors gain a deeper understanding 

through interactions with their tutee, when they answer deep questions and respond to 

misconceptions (Chi et al., 2001; Palinscar & Brown, 1984; Uretsi, 2000).  Roscoe and Chi 

(2008), for example, found that tutee questions were responsible for about two-thirds of 

tutors’ own reflective knowledge-building activity. The TA feedback elements (e.g., quizzes) 

plus the mistakes made by their TA pupils were explicit guides for students to focus on 

questions of causal reasoning. 

 The transfer measured in these studies is unusual, because students had an opportunity 

to learn as part of the assessment (Bransford & Schwartz, 1999).  In Study 1, they learned 

from a related passage, and in Study 2, they learned from a month of instruction on an 

unrelated topic. The leading assumption was that one way to test the added-value of the TA 
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technology was to see if it prepared students for future learning such that they could transfer 

their technology-mediated experiences to help them learn in the future without the 

technology.  

 Such preparation for future learning assessments may be useful for addressing other 

questions involving learning from technology. For example, one outstanding question 

involves the value of videogames and other interactive media frequently found outside of 

school (e.g., Barron, Martin, Takeuchi, & Fithian, 2009; Gee, 2003; Kuhl, Tsao, & Liu, 2003; 

Ito, 2009; Stevens, Satwicz, & McCarthy, 2008).  The content of these informal learning 

experiences rarely map cleanly into curricular standards.  Therefore, it seems unlikely that 

experiences with these media would yield direct gains on standardized or curriculum-aligned 

assessments.  Nevertheless, some of these highly interactive experiences may provide 

students with important competencies, dispositions, or prior knowledge that can prepare them 

to learn.  One way to find out which informal technologies are valuable for learning, and 

which are not, is to use assessments that include opportunities to learn as part of that 

assessment.  Such an approach was used to demonstrate that TA prepares students to learn 

once the technology-mediated experience is over; and it may work with other interactive 

technologies that can provide unique experiences not normally provided as basic-value in 

standard instruction. 
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Fig. 1  The Primary Teachable Agent Interface  a) A student has named her agent “Dee,” customized Dee’s 

look, and taught her about global warming. Dee has answered the question, “If ‘methane’ increases, what 

happens to ‘heat radiation?’” both graphically and in text.  b) The “Teach Link” window in which the student 

has taught Dee the causal proposition: ‘insulation’ decreases ‘heat radiation.’  c) The “Ask” window by which 

the student can query Dee to test her understanding 

Fig. 2  TA-Affiliated Feedback Technologies  a) All-Possible-Questions matrix:  automated scoring indicates 

TA accuracy for all possible questions [Green = correct; Red = incorrect; Yellow = correct, but reasoning path is 

wrong].  b) Front-of-Class display:  teachers can project and quiz multiple agents simultaneously to provide a 

visual anchor for classroom discussion.  c) Game Show:  students can chat and have their agents compete in an 

online game show for homework. d) Lobby: student portal to mapping, agent customization, chat, and Game 

Show.  

Fig. 3  Global Warming Expert Map Study 1  The cumulative map for the three units, a) Mechanisms, b) 

Causes, and c) Effects, contains 27 nodes, 31 links, and 3 feedback loops 

Fig. 4  Mean Question Scores for Global Warming Assessments  Scores are broken out by test, length of 

causal inference, and treatment 

Fig. 5  Sample coding of a student map in the PFL assessment  Students were given a 1-page text on how to 

help prevent global warming and four starter concepts.  Maps were coded for total concepts included, number of 

concepts from the passage, and number of passage concepts integrated with valid causal paths 

Fig. 6  Average Scores on Added-Value Questions  Scores are broken out by kit and condition 

Fig. 7  Average Scores on Basic-Value Questions  Scores are for LS kit only and broken out by item type and 

condition 
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APPENDIX 1 

 

Sample of Added-Value Questions for Study 2:  Living Systems Kit, Human Body Sub-

unit 
 

1. Crocodiles swallow their food in large chunks. Sometimes they need to make extra 

stomach acid to digest the large chunks.  The body uses carbon dioxide from the blood to 

make acid.  Crocodile hearts are the same as human hearts except that they have an extra 

blood vessel to help make acid.  Here is a diagram of the crocodile heart. 

 
 

Using what you know about the human heart and lungs, why is this vessel located here 

and not somewhere else?  Explain your reasoning.  

 

2. After you donate blood, you should eat a snack and rest. Using what you know about 

blood, why do you need the snack and the rest? 

 

3. When cells do less work, what happens to the amount of carbon dioxide in the body?  

 

4. How does an increase in heart beating help increase the amount of oxygen in your body? 

Explain your reasoning. 

 

Left side  

of body 

Right side  

of body 

Extra vessel  

in crocodiles 
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Samples of Expert Maps Used in Study 2 

 

 

a. Expert map for Living Systems Kit, Human Body Sub-unit 

b. Expert map for Water Planet Kit, Water Vapor I Sub-unit 

 

 



Fig. 1 The Teachable Agent Interface a) The student has named her 

agent “Dee,” customized Dee’s look, and taught her about global warming. 

Dee has answered the question, “If ‘methane’ increases, what happens to 

‘heat radiation?’” both graphically and in text.  b) The “Teach Link” window in 

which the student has taught Dee the causal proposition: ‘insulation’

decreases ‘heat radiation.’ c) The “Ask” window by which the student can 

query Dee to test her understanding

a b

c



Fig. 2 TA-affiliated feedback technologies.  a All-Possible-Questions matrix:  automated scoring indicates TA 

accuracy for all possible questions [Green = correct; Red = incorrect; Yellow = correct, but reasoning path is 

wrong].  b Front-of-Class display:  teachers can project and quiz multiple agents simultaneously to provide a 

visual anchor for classroom discussion.  c Game Show:  students can chat and have their agents compete in 

an online game show for homework. d Lobby: student portal to mapping, agent customization, chat, and Game 

Show. 

ba

c d



Fig. 3 Global Warming Expert Map The cumulative map for the three units, 

a) Mechanisms, b) Causes, and c) Effects, contains 27 nodes, 31 links, and 3 

feedback loops

a

bc



Fig. 4 Average Item Scores for Global Warming Assessments  Scores are

broken out by test, inference length, and treatment
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Figure 5  Sample coding of a student map in the PFL assessment Students were 

given a 1-page text on how to help prevent global warming and four starter concepts.  

Maps were coded for total concepts included, number of concepts from the passage, 

and number of passage concepts integrated with valid causal paths



Figure 6  Average Scores on Added-Value Questions  
Scores are broken out by kit and condition
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Figure 7  Average Scores on Basic-Value Questions  Scores are for LS kit 

only and broken out by item type and condition 
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