Modeling Exploration Strategies to Predict Student Performance within a Learning Environment and Beyond

Tanja Käser
AAA Lab
Graduate School of Education
Stanford University
tkaaser@stanford.edu

Nicole R. Hallinen
Psychology Department and
College of Education
Temple University
nicole.hallinen@temple.edu

Daniel L. Schwartz
AAA Lab
Graduate School of Education
Stanford University
daniel.schwartz@stanford.edu

ABSTRACT

Modeling and predicting student learning is an important task in computer-based education. A large body of work has focused on representing and predicting student knowledge accurately. Existing techniques are mostly based on students’ performance and on timing features. However, research in education, psychology, and educational data mining has demonstrated that students’ choices and strategies substantially influence learning. In this paper, we investigate the impact of students’ exploration strategies on learning and propose the use of a probabilistic model jointly representing student knowledge and strategies. Our analyses are based on data collected from an interactive computer-based game. Our results show that exploration strategies are a significant predictor of the learning outcome. Furthermore, the joint models of performance and knowledge significantly improve the prediction accuracy within the game as well as on external post-test data, indicating that this combined representation provides a better proxy for learning.

Keywords
probabilistic student models, learning, strategies, prediction, simulations

1. INTRODUCTION

A major question for the design of computerized learning environments is whether success within a learning environment translates to success outside of the environment. Many data mining efforts have primarily focused on modeling and predicting performance within the trajectory of the learning environment.

One of the most popular approaches to representing and predicting student knowledge accurately is Bayesian Knowledge Tracing (BKT) [13]. Predictive performance of the original BKT model has been improved by applying clustering [27] and individualization techniques [26, 39, 40, 42]. Other widely used student modeling approaches include latent factors models [7, 8, 29] or dynamic Bayesian networks (DBN) [12, 19, 20, 23]. Most of these models represent student knowledge based on the students’ past performance within the computerized learning environment, i.e., the students’ answers to tasks are assessed and serve as observations for the respective method. When the (predicted) student knowledge within the learning environment does not fully predict success outside of the environment, it may be necessary to consider additional features such as engagement, affect or learning behavior for student modeling.

It has been shown that features such as strategies or choices influence the learning outcome. The strategies students’ applied in an educational game influenced their implicit science learning [32, 15]. Furthermore, students inevitably have to make choices when they learn, such as for example the decision about what and how to learn. Choice-based assessments interpret students’ choices as an outcome of instruction and use them as a proxy for students’ future learning [34]. By integrating choice-based assessments in short interactive computer games, the influence of critical thinking [10], consultation of literature [11], and feedback seeking behavior [14] on the success outside the game was demonstrated.

Furthermore, there has been an increase in the use of open-ended simulations [41] over the last decade. Ideally, students explore different configurations of parameters to infer the underlying principles. Under the best of circumstances, students learn the principles more deeply through exploration than if they are simply told the principles and asked to practice applying them [35]. Moreover, learning how to explore a simulation or empirical phenomenon is a major goal of science education in its own right. A significant technical challenge involves evaluating exploration choices to help predict student learning, perhaps with the intent of intervening, characterizing students, or simply to understand the exploratory behaviors worth teaching. If exploratory behaviors are relevant to learning, then we should be able to detect exploration patterns that are associated with learning outcomes and integrate these patterns into our student models.

However, research on integrated models of performance and strategies is sparse. While other additional features influencing the learning outcome such as help-seeking [4, 30, 31] and off-task behavior [2, 3] have been integrated or added to existing student modeling approaches, research on students’ strategies in learning environments mainly focused on detecting [17, 32] player strategies in an educational game, classifying students’ problem-solving strategies [5, 24] or modeling strategies using interaction networks [15, 16]. FAST [18] is a technique for integrating general features into
BKT. Dynamic mixture models [22] and DBNs [33] have been used to trace student engagement and knowledge in parallel. However, none of these existing models combine the representation of performance and learning strategies.

In this paper, we demonstrate that including an analysis of students’ exploration strategies within the game increases our ability to predict out-of-game performance compared to an analysis that only considers student success within the game. We present a first-of-kind model for integrating exploratory behaviors and problem-solving success to predict both in-game and out-of-game performance. Our work is based on data collected with a short interactive computer-based game assessing students’ exploration choices. The game is centered around a tug-of-war topic and gives students the possibility of simulating their own tug-of-war setups and testing their knowledge about the (hidden) rules (i.e., the forces) governing the tug-of-war. By extensively analyzing the collected log-file data, we demonstrate that students’ exploration choices and strategies significantly influence the learning outcome. Furthermore, we build a set of simple probabilistic student models jointly representing student knowledge and strategies and evaluate their prediction accuracy within the computer-based game as well as on an external post-test. Our results demonstrate that modeling the influence of learner strategies on student knowledge significantly improves predictive performance and therefore constitutes a better representation of learning.

2. BACKGROUND

Probabilistic graphical models are widely used for representing and predicting student knowledge and learning. One of the most popular approaches is Bayesian Knowledge Tracing (BKT). BKT represents student knowledge by employing one Hidden Markov Model (HMM) per skill. The latent variable of the network represents (binary) student knowledge. The observed variable models the binary answers (correct or wrong) of students to questions associated with the edge. The observed variable models the binary answers (correct or wrong) of students to questions associated with the edge. The observed variable models the binary answers (correct or wrong) of students to questions associated with the edge.

The transmission probabilities are described by
\[P \text{ emission probabilities of the model are specified using} \]
\[p \text{ known skill and} \]
\[p \text{ parameters. The transmission probabilities are described by} \]
\[P \text{ emission probabilities of the model are specified using} \]
\[p \text{ known skill and} \]
\[p \text{ parameters. The transmission probabilities are described by} \]
\[P \text{ emission probabilities of the model are specified using} \]
\[p \text{ known skill and} \]
\[p \text{ parameters. The transmission probabilities are described by} \]
\[P \text{ emission probabilities of the model are specified using} \]
\[p \text{ known skill and} \]
\[p \text{ parameters. The transmission probabilities are described by} \]
\[P \text{ emission probabilities of the model are specified using} \]
\[p \text{ known skill and} \]
\[p \text{ parameters. The transmission probabilities are described by} \]
\[P \text{ emission probabilities of the model are specified using} \]

\[L \]
\[\text{the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]

\[L \]
\[\text{the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]
\[p \text{ the probability of correctly answering an unknown skill and} \]
\[p \text{ the probability of getting an already learned skill. In traditional BKT, we assume} \]

\[\sum_{L} p(O_1, \ldots, O_T, L_1, \ldots, L_T | p_0, p_T, p_S, p_G) \] \(\text{(1)} \)

where we marginalize over all the hidden states \(L \). Maximization of the likelihood is relatively simple and is commonly performed using expectation maximization [9], brute-force grid search [1] or gradient descent [42].

3. EXPERIMENTAL SETUP

All evaluations of this paper were conducted using data from an interactive computer-game. In the following, we describe the training environment, the associated post-test as well as the collected data.

3.1 Training Environment

Learners need to make choices based on their prior knowledge and the (imperfect) information available to them. Students for example need to decide what and how to learn. Choice-based assessments ‘measure’ students’ choices to get a proxy for their future learning. These assessments give students explicit opportunities to engage in learning behaviors, such as seeking feedback, creating visualizations, or consulting references. TugLet is a short, interactive computer-based game assessing students’ exploration choices. The topic of the game is a tug-of-war, modeled with respect to forces and motion simulation. Each tug-of-war team consists of a maximum of four team members. There are small (weight \(w = 1 \)), medium (\(w = 2 \)), and large (\(w = 3 \)) characters.

To determine the winning side, the strength of each party needs to be computed, i.e., the weights need to be summed up. The position of the weights does not matter. The students are not told the relationships between the different weights, they must be discovered by interacting with the game. In the game, players explore by interacting with a simulation: They can set up opposing tug-of-war teams and see how they fare against each other. The player’s goal is to figure out how a team’s size/weight corresponds with the strength of its pull, so that they will be able to accurately predict which team will win when presented with alternative scenarios.

Students have the choice between two different activities: Explore and Challenge. In the Explore mode (illustrated in Figure 1 (left)), different characters can be set up and the results can be viewed to induce and test hypotheses. The Challenge mode tests the student’s knowledge about the weights, i.e., the outcome of tug-of-war questions needs to be predicted (see Figure 1 (right)). This mode consists of eight questions ordered by increasing complexity. If a question gets answered incorrectly, the student is put back into Explore mode. The student is free to choose the Challenge mode at any point in time. The game is over after correctly answering eight Challenge questions in a row.

The interactive computer-game TugLet comes with an associated post-test, which assesses the students’ knowledge about the rules (i.e., the weights and relationships of the different characters) governing the tug-of-wars. The post-test is a paper-and-pencil test consisting of ten questions. Children are presented a fixed tug-of-war team for the left side as well as ten different tug-of-war teams for the right side. The task is to pick all the cases resulting in a tie. A summary sketch of the post-test is provided in Figure 2, where ‘L’ denotes a large character, ‘M’ a medium character, and ‘S’ stands for a small character.

3.2 Data Set

The data set used consists of 127 students (68 male, 59 female) in the 8-th grade of a middle school. The students had no prior experience with the topic from the science curriculum. Students played TugLet for a maximum time of 15 minutes, followed by a short paper-and-pencil post-test. During game play, all the prompts were recorded in log files. Children solved on average 44.2 challenge questions (\(\sigma = 33.3 \)). They spent 42% of their time in the Explore mode. Most of the students (\(n = 111 \)) successfully completed all challenge questions. The average accuracy in the post-test was 0.76 (\(\sigma = 0.20 \)), \(n = 31 \) students had a perfect post-test.
Figure 1: Explore (left) and Challenge (right) activities for TugLet. Students are free to enter Challenge mode at any point in time by clicking on the Challenge button (left).

Figure 2: In the post-test, children have to select the cases resulting in a tie. The second case for example results in a tie, since the weight of three small (S) characters is equal to the weight of one large (L) character.

4. KNOWLEDGE REPRESENTATION

We represent the knowledge of the students as a set of rules describing the relationships between the weights of the different characters. The winning side of a specific tug-of-war configuration is then determined by iteratively applying the available rules. The complete TugLet rule set consists of \(n = 12 \) rules \(\mathcal{R} = \{ R_i \} \) with \(i \in \{ 1, \ldots, n \} \) and is listed in Table 1. Remember that a large character has a weight of \(w = 3 \), a medium character weighs \(w = 2 \) and the weight of a small character is \(w = 1 \). The rule set \(\mathcal{R} \) consists of nine rules describing inequality and equality relationships between the different characters (weights). Furthermore, three meta-rules define basic tug-of-war concepts. Rule \(R_{10} \) states that if the left and right team have the exact same number of characters (and weights), the configuration will result in a tie. In rule \(R_{10} \) the fact that more characters of the same weight are stronger (i.e., three small characters will win against two small characters) is recorded. Rule \(R_{12} \) finally allows for canceling out characters with the same weight on both sides. If the left team for example consists of a large and a medium character and the right side contains a medium and a small character, \(R_{12} \) can be applied to cancel out the medium characters. The rule set in \(\mathcal{R} \) contains all the rules necessary to solve all possible configurations in the game as well as in the post-test. Note that already a subset of the rules would (theoretically) be enough to derive the relationships between the weights of all characters. The rules \(R_1, \ldots, R_4 \) and \(R_7, \ldots, R_9 \) can for example be derived from rules \(R_5 \) and \(R_6 \). This hierarchy of the rule set is necessary, since the students tend to learn in smaller steps, i.e., they test simpler hypotheses first (e.g., ‘Large > Small’), and since the questions in Challenge mode are ordered by complexity. The final rule set \(\mathcal{R} \) therefore is the subset of all possible correct rules necessary to determine the winning side of all tug-of-war set-ups encountered in TugLet and in the associated post-test.

Each tug-of-war configuration is associated with a subset \(\mathcal{R}_N \subset \mathcal{R} \) of rules necessary to determine the winning side. The calculation of \(\mathcal{R}_N \) is performed as follows: each rule \(R_i \in \mathcal{R} \) has a set of conditions attached under which this specific rule can be applied. Rule \(R_6 \) for example requires the presence of at least one medium character on the left (or right) side, respectively and a minimum of two small characters placed on the right (or left) side, respectively. To build \(\mathcal{R}_N \), the system iterates through the rules \(R_i \in \mathcal{R} \) and applies them, until no more rule can be applied and hence the winning side is determined. During this process, simpler rules describing basic relationships between characters (e.g., \(R_3 \) or \(R_2 \)) are prioritized. The resulting rule set \(\mathcal{R}_N \) consists of all the applied rules. Figure 3 shows the rule set \(\mathcal{R}_N \) for an example configuration, where ‘L’ denotes a large weight, ‘M’ a medium weight and ‘S’ stands for a small weight.

During game play, the students are exposed to the rules...
Table 1: Rule set \mathcal{R} representing the domain knowledge in TugLet.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>Large > Small</td>
</tr>
<tr>
<td>R_2</td>
<td>Large > Medium</td>
</tr>
<tr>
<td>R_3</td>
<td>Medium > Small</td>
</tr>
<tr>
<td>R_4</td>
<td>Large > $2 \cdot$ Small</td>
</tr>
<tr>
<td>R_5</td>
<td>Large = $3 \cdot$ Small</td>
</tr>
<tr>
<td>R_6</td>
<td>Medium = $2 \cdot$ Small</td>
</tr>
<tr>
<td>R_7</td>
<td>Large = Medium + Small</td>
</tr>
<tr>
<td>R_8</td>
<td>2 · Medium > Large</td>
</tr>
<tr>
<td>R_9</td>
<td>Small + Large = $2 \cdot$ Medium</td>
</tr>
<tr>
<td>R_{10}</td>
<td>Equality</td>
</tr>
<tr>
<td>R_{11}</td>
<td>Cancellation</td>
</tr>
<tr>
<td>R_{12}</td>
<td>More is better</td>
</tr>
</tbody>
</table>

Figure 3: Example tug-of-war configuration with two medium (M) and three small (S) characters. The winning side can be determined by applying the rule set $\mathcal{R}_N = \{R_1, R_4\}$.

5. EXPLORATION STRATEGIES

To analyze the influence of students’ exploration choices and behavior, we mined the log file data collected with TugLet as well as the external post-test data (see Section 3.2). While 87% of the students passed the TugLet game, i.e., managed to answer all eight challenge questions at the end of the training, post-test performance is mixed. While the top 24% of the students have a perfect post-test, the bottom 20% reach an accuracy (ratio of correct answers) less or equal than 0.5. Therefore, the students’ training performance measured by their answers in Challenge mode seems to describe the learning and knowledge of the students insufficiently.

Therefore, we investigated students’ exploration behavior by analyzing their trajectories through the game as well as by examining students’ specific hypotheses. Figure 4 illustrates the trajectories of the students within the game. The x-axis denotes the number of attempts so far in passing the Challenge mode, the y-axis denotes the level (number of correctly answered questions) reached: each circle or cross in Figure 4 denotes a challenge attempt of a student. A circle (or cross) at (4, 5) means that the student answered five (out of eight) questions correctly at his 4th attempt to pass the Challenge mode. The size of the circle denotes the number of explored tug-of-war set-ups right before challenging, a cross means that zero set-ups were simulated. Challenge attempts of students with a perfect post-test are colored in red.

Figure 4: Comparison of student trajectories. Each circle (or cross) denotes exactly one challenge attempt of one student, i.e., a circle at (2, 5) means that the student answered five (out of eight) questions correctly at his 2nd attempt to pass the Challenge mode. The size of the circle denotes the number of explored tug-of-war set-ups right before challenging, a cross means that zero set-ups were simulated. Challenge attempts of students with a perfect post-test are marked in red.
creases over time (as visible from the decreasing circle sizes as well as the many crosses). Therefore, there is no significant correlation between the post-test performance and the number of tug-of-war set-ups tested before the first challenge attempt ($p = .203$). However, while the students with perfect post-test tend to test (few) tug-of-war set-ups in-between two challenge attempts, students with lower post-test accuracy stop exploring completely as can be seen from the many blue crosses in Figure 4. Indeed, the average number of tug-of-war set-ups tested in Explore mode in-between two attempts to pass the Challenge mode is positively correlated to post-test accuracy ($\rho = 0.18, p = .048$).

Figure 5 illustrates the trajectories of four example students. The x-axis again shows the number of attempts in passing the Challenge mode, the y-axis shows the achieved level (number of correctly answered questions). The width of the bar denotes the number of tug-of-war set-ups tested before changing to Challenge mode. Student B and Student C had a perfect post-test, while the post-test accuracy of Student A and Student D was below 0.5. The sample trajectories confirm that students with low performance need more challenge attempts to pass the game. It seems that, while all students spend much time in Explore mode in the beginning, students performing badly in the post-test give up exploration much earlier. Student C is an exception: this students does not explore in the beginning, but realizes later that he will not pass without doing so. Student D persists, but does not seem to profit from the investigated tug-of-war set-ups.

We hypothesize that the reason behind these observations might be the fact that the conclusions drawn in the Explore mode are of higher value for the good performers, i.e., that the good performers test more informative tug-of-war set-ups. Figure 6 illustrates this behavior. The initial part of the trajectories of Student B (left) and Student A (right) are displayed. In the initial explore phase, both students exhibit similar exploration strategies. They test hypotheses such as equality (tug-of-war set-ups 1 and 4 of Student A), position independence (tug-of-war set-ups 2 and 5 of Student B), and relationships between the weights of the characters (tug-of-war set-up 3 of Student A). Note that during the first exploration phase, the characters available for simulation are limited: only one large and one small character are provided for each team. After the first wrong answer in Challenge mode, the students are put back into Explore mode and have the full set of characters available for hypothesis testing. Now the wheat is separated from the chaff. Student B (see Figure 6 (left)) systematically tests tug-of-war set-ups exploring the relationships between the different characters leading to the (possible) derivation of rules R_6, R_4, and R_5 (see Table 1). Student A on the other hand seems overcharged with the many characters available for testing. As we can see from Figure 5, Student A explores once more before the third challenge attempt, but completely quits exploring later on.
Given these observations, we divide all tug-of-war set-ups tested in the Explore mode into three categories: ‘strong’, ‘medium’, ‘weak’. This categorization is computed automatically based on the set of rules RN necessary to determine the winner of the given tug-of-war configuration. We found that a good exploration strategy focuses on isolating one underlying principle at a time. Therefore, a set-up is considered as ‘strong’, if $|RN| = 1$ and $R_i \in RN$ is seen for the first time, i.e., the student tests exactly one new rule. If the rule R_i has been tested or seen previously, the set-up is categorized as being ‘medium’. If the set-up tests two rules, i.e., $|RN| = 2$ and $R_{11} \in RN$ the tested configuration is labeled as a ‘medium’ hypothesis. We assume that the student could still draw conclusions (i.e., find a new rule R_i) by first applying the cancellation rule R_{11} (see Section 4 and Table 1) and thus reducing the configuration to a set-up testing exactly one rule. If $|RN| = 2 \land R_{11} \notin RN$, the tested set-up is put into the ‘weak’ category. We also categorize tug-of-war set-ups as being ‘weak’ hypotheses if they require more than two rules to determine the winning side, i.e., if $|RN| > 2$. A set-up testing too many principles at the same time does not allow to draw conclusions on relationships between single characters. An analysis of the training data reveals, that better performers indeed seem to have superior exploration strategies: there is a significant positive correlation between the number of ‘strong’ tug-of-war set-ups tested and the achieved accuracy in the post-test ($\rho = 0.21, p = .019$).

6. PROBABILISTIC MODELS OF STRATEGIES

To investigate the benefits of modeling performance and strategies jointly, we constructed probabilistic graphical models representing student knowledge and exploration behavior in one network and evaluated their predictive performance within the TugLet environment as well as in the post-test.

6.1 Simple Probabilistic Models

To model the learning process of the students and to make predictions about their performance in the game as well as in the post-test, we build probabilistic graphical models based on the representation of domain knowledge as a set of rules (see Section 4).

Pure Challenge Model. The pure challenge model (PCM) is a HMM, employing one model per rule. Figure 7 illustrates the structure of the graphical model. The binary latent variable $KR_{i,t}$ represents, whether the student has mastered rule R_i at time t. The observed variable $OR_{i,t}$ is also binary and indicates, whether a student has correctly applied rule R_i at time t. Correctness is encoded as follows: If a student answers a challenge question at time t correctly, we assume that all rules $R_i \in RN$ have been applied correctly, i.e., $o_{R_{i,t}} = 1$, $\forall R_{i} \in RN$. If the student gives an incorrect answer, we assume the all rules $R_i \in RN$ have been applied incorrectly, i.e., $o_{R_{i,t}} = 0$, $\forall R_{i} \in RN$. This encoding method also influences prediction: the predicted probability $\hat{p}_{C,t}$ that the student will correctly determine the winning team of a tug-of-war configuration C at time t depends on the predicted probabilities $\hat{p}(O_{R_{i,t}} = 1)$ of the rules $R_i \in RN_G$:

$$\hat{p}_{C,t} = \prod_{R_i} \hat{p}(O_{R_{i,t}} = 1), R_i \in RN_G. \quad (2)$$

While this model is based on BKT, we allow a small amount of forgetting ($p_F > 0$). Note that in the PCM, we do not represent actions performed in the Explore mode.

Correct Hypotheses Model. The correct hypotheses model (CHM) is an extension of the PCM. It again employs one HMM per rule (see Figure 7) and the interpretations of the latent and observed variables are accordingly. We encode the answers to the challenge questions in the same way as for the PCM. However, in contrast to the challenge model, the CHM also incorporates the actions performed in Explore mode. For each tug-of-war set-up H tested in the Explore mode, the rule set RN_H necessary to find the winning side of the simulated set-up are computed. We then assume that all rules in RN_H have been applied correctly, i.e., $o_{R_{i,t}} = 1$, $\forall R_{i} \in RN_H$.

6.2 Modeling Strategies

Both the PCM and the CHM are variations of BKT models and therefore allow for efficient parameter learning and predictions. However, the two models do not (in case of the PCM) or only in a limited way (in case of the CHM) take the exploration behavior of the students into account. Yet, our data analysis has shown that students’ exploration choices and strategies are significantly correlated to the learning outcome (see Section 5).

Weighted Hypotheses Model. The weighted hypotheses model (WHM) is based on the observation that exploration behavior significantly influences post-test performance. It again employs one HMM per rule and uses the graphical structure illustrated in Figure 7. The binary latent variables $KR_{i,t}$ again denote, whether the student has mastered rule R_i. The observed variables $OR_{i,t}$ are also binary and denote an application of rule R_i when answering a challenge question C or the testing of a rule R_i in a tug-of-war set-up H in Explore mode. We encode answers in Challenge mode as described in the PCM (see Section 6.1) and rules encountered in Explore mode as explained in the CHM (see Section 6.1). However, the WHM introduces a weighting of the different observations. Observations associated with a tested tug-of-war set-up are weighted according to the three categories ‘strong’, ‘medium’, ‘weak’ as defined in Section 5. Challenge answers are weighted differently based on their correctness. The sequence of T observations $o_{R_{i}}$ for a rule R_i is therefore given by

\begin{align*}
\mathcal{O}_{R_i} & = \{o_{R_{i,t}}\}_{t=1}^{T}, \quad o_{R_{i,t}} \in \{0, 1\}, \quad \forall R_i \in RN_G
\end{align*}
\[\mathbf{R}_t = (o_{R_{1,1}}^{F1}, o_{R_{2,1}}^{F2}, \ldots, o_{R_{T,1}}^{F_T}), \]

with weights \(w_j, j \in 1, \ldots, T \) specified as follows:

\[
\begin{aligned}
 w_{hs} & \quad \text{is a strong hypothesis.} \\
 w_{hm} & \quad \text{is a medium hypothesis.} \\
 w_{hw} & \quad \text{is a weak hypothesis.} \\
 w_{cw} & \quad \text{is a wrong challenge answer.} \\
 w_{cs} & \quad \text{is a correct challenge answer.}
\end{aligned}
\]

The weights \(w = (w_{hs}, w_{hm}, w_{hw}, w_{cw}, w_{cs}) \) are positive integers and can be learned from the collected data using cross-validation.

6.3 Experimental Evaluation

We evaluated the predictive accuracy of our models within the TugLet environment as well as on the post-test using the data set described in Section 3.2. We used a train-test setting, i.e., parameters were fit on the training data set and model performance was evaluated on the test set. All the models were fit using a Nelder-Mead (NM) optimization [25]. The NM algorithm is often used for optimization problems due to its simplicity and fast convergence rate. Predictive performance was evaluated using the root mean squared error (RMSE) as well as the area under the ROC-curve (AUC). The RMSE is widely used for the evaluation of student models, e.g., [26, 39, 40, 42]. The AUC is a useful additional measure to assess the resolution of a model.

Within-Game Prediction

The prediction accuracy of the PCM and the CHM models on the log files collected from TugLet was evaluated using student-stratified cross validation. Since the estimation of model performance during parameter tuning leads to a potential bias [6, 38], we use a nested student-stratified cross validation to estimate the predictive performance of the WHM and to at the same time learn the optimal weights \(w_{opt} \) for this model. We used \(r = 50 \) random re-starts for the NM algorithm for all models, since the NM algorithm is known for being trapped into local optima and to be sensitive to the initial starting values [25, 28]. We used the same parameter constraints for all models: \(p_i \leq 0.5 \), if \(i \in \{L, F, G, S\} \). The prior probability \(p_0 \) remained unconstrained. Figure 8 displays the RMSE and the AUC for the PCM, CHM, and WHM models.

The WHM demonstrates the highest prediction accuracy within the game (\(\text{RMSE}_{WHM} = 0.3328 \)). The inclusion of exploration choices into the model led to an improvement in RMSE by 2.6\% (\(\text{RMSE}_{PCM} = 0.3574, \text{RMSE}_{CHM} = 0.3480 \)), the representation of strategies further reduced the RMSE by 4.4\% (\(\text{RMSE}_{CHM} = 0.3480, \text{RMSE}_{WHM} = 0.3328 \)).

A one-way analysis of variance performed on the RMSE of the different models shows that there are indeed significant differences between the mean RMSEs of the different models (\(F = 7.45, p < .001 \)). The results of multiple comparisons (using a Bonferroni-Holm correction) between the different models are listed in Table 2. There is no significant difference in performance between the PCM and CHM models. However, the WHM significantly outperforms the PCM and CHM models. All three models are performing well in discriminating challenges from failures (\(\text{AUC}_{PCM} = 0.7985, \text{AUC}_{CHM} = 0.7874, \text{AUC}_{WHM} = 0.7954 \)), there are no significant differences in AUC between the models.

The optimal weights found for the WHM are \(w_{opt} = \{1, 1, 3, 1, 2\} \). Tug-of-war set-ups classified as ‘strong’ hypotheses have a higher impact than set-ups falling in the ‘medium’ or ‘weak’ categories \((w_{hs} = 3, w_{hm} = 1, w_{hw} = 1) \). ‘Strong’ hypotheses are also assigned more weight than correct answers to challenge questions \((w_{hs} = 3, w_{cs} = 2) \).

Post-Test Prediction

To evaluate the predictive performance of the different models on the post-test, we used all within-game observations (i.e., actions performed within the TugLet environment) for training and predicted the outcome of the external post-test. We again used \(r = 50 \) random re-starts for the NM algorithm. We constrained the parameters of all models as described for the within-game prediction: \(p_i \leq 0.5 \), if \(i \in \{L, F, G, S\} \). The prior probability \(p_0 \) remained unconstrained. For the WHM, we can safely use the optimal weights \(w_{opt} = \{1, 1, 3, 1, 2\} \) found in the nested cross validation, since this optimization was performed on within-game data only. Prediction accuracy in terms of the RMSE and the AUC was computed using bootstrap aggregation with re-sampling (\(b = 100 \)). Figure 9 displays the error.
measures (with standard deviations) for the PCM, CHM, and WHM models.

The WHM shows the best performance for both error measures. Modeling exploration behavior even in a simplistic way leads to an improvement in RMSE of 4.55% (RMSE_{PCM} = 0.4370, RMSE_{CHM} = 0.4171), categorization of the different explored set-ups along with the introduction of weighted observations decreases the RMSE by another 7.6% (RMSE_{CHM} = 0.4171, RMSE_{WHM} = 0.3854).

The low standard deviations in RMSE (σ_{PCM} = 0.0079, σ_{CHM} = 0.0094, σ_{WHM} = 0.0131) indicate significant differences between the different models. A one-way analysis of variance confirms that there are indeed significant differences between the mean RMSEs of the different models (F = 633.46, p < .001). Multiple comparisons (using a Bonferroni-Holm correction) between the mean RMSEs of the different models demonstrate that all model means are significantly different from each other. Table 3 illustrates this fact: The 95% confidence intervals for the differences in RMSE between the models do not include zero.

The WHM also exhibits a higher AUC than the PCM and the CHM (AUC_{PCM} = 0.5956, AUC_{CHM} = 0.5891, AUC_{WHM} = 0.6164). Although the standard deviations (σ_{PCM} = 0.0246, σ_{CHM} = 0.0283, σ_{WHM} = 0.0248) are higher than for the RMSE, a one-way analysis of variance suggests that the mean AUCs of the different models are not the same (F = 30.22, p < .001). However, the multiple comparisons (employing a Bonferroni-Holm correction) between the mean AUCs demonstrate that while the differences between the PCM and the CHM are not significant, the WHM significantly outperforms the other two models. Table 4 lists the mean values μ for the differences between the models’ average AUCs along with 95% confidence intervals and significance values.

Table 3: Mean pair-wise differences μ in RMSE between the models along with confidence intervals ci and significance values p.

<table>
<thead>
<tr>
<th></th>
<th>Mean μ</th>
<th>95% ci of μ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_PCH,CHM</td>
<td>0.0199</td>
<td>[0.0165, 0.0233]</td>
<td><.001</td>
</tr>
<tr>
<td>d_PCH,WHM</td>
<td>0.0517</td>
<td>[0.0483, 0.0551]</td>
<td><.001</td>
</tr>
<tr>
<td>d_CHM,WHM</td>
<td>0.0318</td>
<td>[0.0284, 0.0352]</td>
<td><.001</td>
</tr>
</tbody>
</table>

Table 4: Mean pair-wise differences μ in AUC between the models along with confidence intervals ci and significance values p.

<table>
<thead>
<tr>
<th></th>
<th>Mean μ</th>
<th>95% ci of μ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_PCH,CHM</td>
<td>0.0065</td>
<td>[-0.0021, 0.0151]</td>
<td>0.184</td>
</tr>
<tr>
<td>d_PCH,WHM</td>
<td>-0.0209</td>
<td>[-0.0295, -0.0123]</td>
<td><.001</td>
</tr>
<tr>
<td>d_CHM,WHM</td>
<td>-0.0273</td>
<td>[-0.0359, -0.0187]</td>
<td><.001</td>
</tr>
</tbody>
</table>

7. **DISCUSSION AND CONCLUSION**

The strategies and choices of students in a learning environment have a significant influence on their learning outcome. Previous work has shown that strategies used vary considerably across students [36, 37]. Furthermore, students’ abilities in critical thinking [10], their literature inquiries [11], and their feedback seeking behavior [14] have a significant impact on the learning outcome.

Recent research in educational data mining has investigated the strategic behavior of children in games. However, most of this work has focused on the data mining part, i.e., measuring implicit science learning based on player moves in an educational game [17, 32] or the classification of problem solving strategies [5, 24]. Research on the modeling part has focused on representing the problem solving behavior only [15].

In contrast to previous work, we represent student knowledge and exploration strategies jointly in one model. Our work is comparable to research on engagement modeling, where student knowledge and engagement are simultaneously traced [33]. FAST [18] also allows for the integration of additional features into a BKT model, however, these additional features influence prediction of the observed state only. In contrast to this approach, in our joint model of knowledge and strategy, the strategies directly influence the (hidden) knowledge state. This technique allows us to predict performance on an external post-test, where information about strategies is not available.

Our results demonstrate that even simple probabilistic models of strategies offer a better representation of learning than a pure performance model. Modeling the strength of student hypotheses leads to a small, but significant improvement of 6.0% of the RMSE (RMSE_{PCM} = 0.3574, RMSE_{WHM} = 0.3328), when predicting students’ answers to challenge questions within the learning environment. Improvements are much larger for the post-test: the joint representation of performance and strategies improves the RMSE by 11.8% (RMSE_{PCM} = 0.4370, RMSE_{WHM} = 0.3854). Modeling strategies also improves the AUC in the post-test, i.e., the WHM is better at discriminating failures (incorrectly answered challenge questions) from successes than the
PCM. The increased prediction accuracy on the post-test demonstrates that 1) using probabilistic models of strategies, we are able to improve the detection of ‘shallow’ learning [21]: From the 111 students passing the game (measured by an assessment of their performance), 21 students achieved an accuracy less or equal than 0.5 on the post test. The better predictive performance on the post-test also shows that 2) simple probabilistic models representing performance and knowledge jointly are superior at identifying understanding. The post-test required a higher level of rule understanding and also a transfer, since tasks were asked in a different way than in the game (selecting tug-of-war set-ups resulting in a tie vs. determining the outcome of a given tug-of-war set-up).

The improved predictive performance of our joint representation of strategies and performance as well as the significant correlations found between exploration choices, strength of hypotheses and the learning outcome confirm the findings of previous work: Students’ choices [10, 11, 14] and learning strategies [15, 32] have a significant impact on the learning outcome.

To conclude, we have proposed the use of probabilistic graphical models jointly representing student knowledge and strategies. Our results demonstrate that simple probabilistic models of strategies are sufficient to significantly improve prediction accuracy. Furthermore, we have shown that students’ strategies significantly influence the learning outcome and therefore, augmented models are a better predictor for learning than pure performance models.

8. REFERENCES

