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Achieving an adaptive learner

Daniel L. Schwartz 
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ABSTRACT
This essay was invited upon the receipt of the American Psychological Association Division 15’s 
Career Achievement Award for Distinguished Psychological Contributions to Education in 2021. I 
propose that modern education should prepare students to continue learning so they can adapt to 
changing times, circumstances, and knowledge bases. A key step in adaptation is recognizing that 
there is something new. I review evidence from three sets of previous studies that show traditional 
instruction succeeds in helping students complete routine tasks but falls well short of preparing 
students to learn from new information and adapt it to novel situations. I try to understand these 
results from three levels of analysis: The overarching goals of instruction; the psychological 
assumptions underlying the instruction; and the in situ demands and natural responses of classroom 
learners. Given these analyses, I motivate four instructional design principles that emphasize helping 
students innovate new ideas and solutions, which in turn, leads them to focus on new information 
and prepares them to adapt and learn from future situations.

Ideally, modern education could prepare students to con-
tinue learning so they can adapt to changing circumstances 
and knowledge bases. Can we educate people to be more 
adaptive? There are many different approaches one might 
take to achieving an adaptive learner. These include offering 
strategies and attitudes, while teaching cognitive flexibility 
and creativity. These approaches, which have many merits, 
are knowledge indifferent. They do not address the starting 
point of adaptation; namely, knowing that there is some-
thing new. If people cannot pick up that there is something 
new, they cannot adapt. Here, I consider the effects of 
knowledge preparation on people’s abilities to pick up new 
information and adapt.

I review three lines of research conducted approximately 
seven years apart that suggest traditional forms of instruc-
tion may be insufficient for achieving an adaptive learner. 
The traditional instruction produced positive outcomes on 
standard measures of efficient recall and procedural execu-
tion. However, when measured by adaptive outcomes, the 
instruction had little benefit. Originally, I entered the studies 
with the assumption that the “experimental” instructional 
treatments would outperform the control conditions of tra-
ditional instruction. I did not anticipate that the traditional 
instruction would be starkly ineffective at achieving adaptive 
outcomes.

This essay attempts to explain why traditional instruction 
fails to achieve adaptive learners. I work from three levels 
of explanation. The first level considers two broad trajecto-
ries of learning associated with routine and adaptive out-
comes—efficiency and innovation. I propose that an 

over-emphasis on the efficiency dimension, a common 
characteristic of traditional instruction, may trap students 
on a trajectory toward non-adaptive outcomes. For the sec-
ond level of analysis, I point to an over-arching cognitive 
assumption behind many theories of instruction. The pre-
vailing assumption is that learning comprises going beyond 
the information given, for example, through elaboration or 
verbal explanation. Borrowing from theories of perceptual 
learning, I motivate the challenge of helping people to see 
the information in the first place, which I call the challenge 
of information pickup. Adaptation can only begin when peo-
ple discern new information worthy of a response. Finally, 
after reviewing the three sets of studies, I analyze classroom 
task demands and natural psychological forces to explain 
why students of traditional instruction do well on routine 
tasks but not adaptive ones. These three levels of analysis 
set the stage for describing four principles that guided the 
design of the “experimental” conditions in the studies. 
Together, the principles may offer a prescription for how to 
avoid the risks of traditional instruction while also creating 
conditions for achieving an adaptive learner.

This invited article is on occasion of receiving the 
Lifetime Achievement Award from the Educational 
Psychology branch of the American Psychological 
Association. It is a great honor for which I am appreciative 
and surprised. The topic of this article differs from the 
award speech, which discussed embodiment and learning. 
However, it maintains some of the style of a talk with 
everyday examples.
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Differentiating two courses of learning

All learning creates changes to the brain. Learning, however, 
is not a single thing. Humans house many different types of 
learning that include reinforcement, imitation, perceptual 
differentiation, verbal learning, motor learning and more 
(see Schwartz, et  al., 2016). Just as the immune system 
houses many different processes for handling recurrent 
problems and adapting to novel ones, the brain has multiple 
processes for learning and using information. As I discuss 
below, the different learning processes can be orchestrated to 
achieve two trajectories of learning.

Trajectories toward adaptive and routine expertise

One trajectory is associated with increases in efficiency, and 
the other is associated with innovation. The differentiation 
of efficiency and innovation was captured by March (1991), 
who identified two modes of organizational learning, which 
he termed, exploitation and exploration. Exploitation opti-
mizes known efficiencies, through processes of “refinement, 
choice, production, efficiency, selection, implementation and 
execution” (p. 71). Exploration pursues new alternatives. It is 
characterized by “search, variation, risk-taking, experimenta-
tion, play, flexibility, discovery and innovation” (p. 71).

Hatano and Inagaki (1986), looking at individuals rather 
than organizations, also proposed two paths for learning. 
One path is characterized by low contextual variation, a 
strong reward function, and an emphasis on expediency. The 
second path invites contextual variation, playfulness, and a 
culture that pulls for explanation. Hatano and Inagaki pro-
posed that the endpoints of these pathways are routine and 
adaptive expertise, respectively.

Routine does not mean pedestrian. It means routinized or 
highly efficient. “[R]outine experts are outstanding in terms 
of speed, accuracy, and automaticity of performance, but 
lack flexibility and adaptability to new problems” (Hatano & 
Inagaki, 1986, p. 31). Their leading example was abacus 
grand masters. The masters handled prodigious numerical 
sums by mentally simulating an abacus. The masters were 
surely experts, yet they only performed under highly stable 
conditions and their abilities did not generalize beyond tasks 
involving digit manipulation. Hence, they were called rou-
tine experts. Using March’s language, the abacus masters 
exploited and refined their abilities at mental calculation to 
an astonishing degree.

Cognitive research on learning has made great strides in 
understanding how to increase efficiency. The field has ben-
efited from investigating behaviors that are objectively right 
or wrong, as in remembering the correct word, giving an 
accurate answer, or executing a skilled behavior. Bryan and 
Harter’s (1899) ground-breaking studies of teletype operators 
noted a learning curve that is now called the power law of 
learning. They tracked changes in the efficiency with which 
the operators could send and receive teletype messages. The 
operators showed steep gains in the early months. Over 
time, the gains became asymptotic as the operators slowly 
squeezed out the remaining inefficiencies. Since then, con-
siderable research has examined the steps by which complex 

skills, such as driving a car, move from controlled processing 
to automaticity through a sequence of chunking discrete 
steps into highly efficient bundles (Anderson, 1982). As 
another instance of efficiency research, the voluminous liter-
ature on memory has identified the importance of elabora-
tion and retrieval practice on improving the accuracy of 
recall. As one last instance, Ericsson et  al. (1993) docu-
mented the importance of deliberate and effortful practice 
coupled with copious feedback for accelerating the acquisi-
tion of expertise. It may be fair to say that if people are 
willing to put in the time and effort, cognitive psychology 
has effective prescriptions for how to make them faster, 
more accurate, and less variable.

In contrast to routine expertise, Hatano and Inagaki 
(1986) proposed that adaptive experts have a deep under-
standing of why skills work and their conditions of applica-
tion. This enables them to consider alternatives depending 
on a changing context, and “invent new procedures and/or 
make new predictions” (p. 28). An academic example of 
adaptive expertise comes from Wineburg (1991). History 
professors, who were not experts in American history, 
received historical documents regarding a battle during the 
American Revolution. Their task was to decide which of 
several paintings was the most accurate. The professors 
applied a set of disciplinary heuristics, such as searching for 
corroborating information across documents, which enabled 
them to adapt to the new context of American History. They 
were able to see reliable patterns across the descriptions and 
paintings. High school students, given the same task, “saw 
only a collection of details” (p. 83). An instance of the need 
for adaptive expertise comes from the medical field (e.g., 
Mylopoulos et al., 2018). Doctors must master and efficiently 
deploy a massive body of knowledge, while also adapting to 
discrepant symptoms and emerging treatments.

Compared to research on efficiency, there is less evidence 
on the characteristics and sequences of learning that achieve 
adaptive expertise. One might reasonably speculate that 
adaptive experts invite variation; they try to explain why; 
they tolerate ambiguity and hold hypotheses lightly; they are 
willing to be wrong (for a while); they seek feedback and 
new information; and, they have a strong body of efficient 
knowledge to support the generation of useful adaptations.

One relevant line of research examines content-agnostic 
strategies for enhancing the generation of new ideas (e.g., 
Dow et  al., 2010; Ionescu, 2012). Design thinking includes a 
variety of strategies to avoid being trapped by old ways of 
thinking (Razzouk & Shute, 2012), and inquiry training 
emphasizes systematic investigation to aid in the discovery 
of empirical patterns and underlying causes (de Jong, 2019). 
Another useful line of research involves knowledge-dependent 
pathways for handling novelty, such as analogy generation 
(e.g., Gentner et  al., 2003). People are more likely to use 
their knowledge to handle novel situations if they identify 
the deep similarities across prior instances (Gick & 
Holyoak, 1983).

In this article, I highlight research from perceptual learn-
ing, which asks how people can learn to see what they could 
not before. Sometimes, the need for adaptation can be man-
ifest, as in the case of a worldwide pandemic. But it is often 
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more subtle. People may continue their routines without 
ever noticing a productive opportunity to adapt. A favorite 
example involves American tourists in Italy, who become 
annoyed by the slowness of dinner service rather than notic-
ing how Italians enjoy their evening meal.

A framework of trajectories toward expertise

With David Sears and my brilliant colleague John Bransford 
(see Hmelo-Silver et  al., 2023), we proposed a simple frame-
work that combines the insights of March with Hatano and 
Inagaki (Schwartz et  al., 2005). In Figure 1, movement along 
the horizontal dimension reflects an increase in efficiency. 
For example, as children receive practice solving problems 
such as 4 + 4 + 4 = 12, they improve their speed and accuracy. 
This behavioral change is correlated with the transfer of 
computation in the brain from controlled processing in the 
pre-frontal regions to the interparietal sulcus and specialized 
processing (Rivera et  al., 2005). Their practice moves them 
along the horizontal dimension toward routine expertise, 
which we located in the lower-right corner of Figure 1. 
Routine expertise is the horizon of efficiency.

The vertical dimension reflects cumulative experiences at 
innovating ideas and rendering solutions. For example, stu-
dents may try to invent a new way to solve a novel problem, 
such as finding 1/3 of 12 pieces. Efforts toward innovation 
are solution-oriented explorations.

People who reside in the upper-left corner of Figure 1 are 
strong on innovation experiences but weak on content 
knowledge. It will be hard for them to make effective adap-
tations because they do not know relevant procedures and 
contextual constraints that make a solution successful. 
Creativity is often operationalized as the production of novel 
and appropriate ideas (Oppezzo & Schwartz, 2014). When 
ideating about the possible uses of a brick, taking a brick to 
clean teeth would be novel but not appropriate. People in 
the upper-left corner have strategies for producing novel 
ideas, but their lack of strong domain knowledge limits the 
appropriateness of their ideas. Ideally, they pair their 

knowledge-free strategies with a partner who is high on effi-
cient domain knowledge.

A trajectory to adaptive expertise depends on balancing 
efficiency and innovation. Children may not be able to solve 
the novel problem of finding 1/3 of 12 pieces if they do not 
already know that 4 + 4 + 4 = 12. March (1991) provides a 
nice summary of the perils of pursuing a trajectory that only 
moves along one dimension:

Adaptive systems that engage in exploration to the exclusion of 
exploitation are likely to find that they suffer the costs of exper-
imentation without gaining many of its benefits. They exhibit 
too many undeveloped new ideas and too little distinctive com-
petence. Conversely, systems that engage in exploitation to the 
exclusion of exploration are likely to find themselves trapped in 
suboptimal stable equilibria. As a result, maintaining an appro-
priate balance between exploration and exploitation is a primary 
factor in system survival and prosperity. (p.71)

The dashed horizontal line (R) reflects my proposal that 
instruction that begins on the efficiency path may make it 
difficult for students to take the inflection toward adaptive 
expertise. The traditional forms of instruction that I describe 
in the following studies implicitly emphasize the efficient 
delivery and recapitulation of information. They put students 
on a trajectory toward routine expertise such that the stu-
dents miss opportunities to adapt.

The stylized staircase trajectory (A) from novice to adap-
tive expertise reflects a positive proposal for how to move 
students toward adaptive expertise. To avoid the pull toward 
efficiency, students can engage in activities that promote 
innovation. If done well, these activities can help students 
discern and induce what is new, which prepares them to 
adapt. Moreover, the innovation-first experiences can pre-
pare students to understand solutions and theories more 
deeply, because they can see the key features of the problem 
being solved. Students on trajectory A still need to learn and 
practice efficient solutions and theories. However, unlike stu-
dents on trajectory R, they will be able to use those theories 
and solutions to handle novel situations. The Innovation -> 
Efficiency staircase is consistent with the problem solving 
before instruction framework by Loibl et  al., (2017). As they 
point out, not any problem solving will do, which I return 
to when describing four principles for creating effective 
innovation experiences.

Assumptions about learning and the information 
pickup challenge

My second level analysis considers the broad psychological 
theories that undergird instructional design. Throughout my 
career I have kept a folder of compelling articles. One of my 
favorites is Perceptual Learning: Differentiation or Enrichment 
(Gibson & Gibson, 1955). Their question was how people 
learn to perceive what they could not before. An expert 
archeologist can see details in the soil that a novice cannot 
(Goodwin, 1994). A wine sommelier can discern subtle fla-
vors whereas a novice might notice red versus white 
(Solomon, 1997). Years after my initial reading, I realized 
the Gibson article is relevant to an assumption in most con-
temporary instructional models. It is also highly relevant to 

Figure 1. a framework for considering experiences that drive trajectories 
toward routine and adaptive expertise. trajectory (R) proposes that students 
who begin instruction on an efficiency trajectory will have difficulty escaping 
the pull toward routine expertise. trajectory (a) proposes that the path to 
adaptive expertise can begin with innovation efforts followed by the delivery 
and practice of efficient solutions and theories (adapted from schwartz 
et  al., 2005).
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a fundamental challenge to being adaptive—perceiving new 
information.

Their article begins by noting that two competing intel-
lectual traditions share a fundamental assumption. The 
Gibsons proposed that both behaviorism and cognitivism 
were enrichment theories. Both traditions explained percep-
tual learning as the result of associations that enrich sen-
sory stimulation (Sensory nerves capture physical energy, 
perception detects meaningful structure in sensation). For 
behaviorism, the association to the sensory stimulus was a 
reinforcement signal. Without a reinforcement such as a 
reward, people would not respond to sensory information. 
For cognitivism, the enrichment was the attachment of 
meaning, perhaps from a schema or the memory of prior 
experiences. The Gibsons then proposed a non-enrichment 
alternative they called specificity theory. People learn to per-
ceive by detecting or “picking up” more of the information 
structure already in the world. They ironically noted that 
for enrichment theories, perceptual learning involves mov-
ing further away from the sensory world through the accu-
mulation of associations. In contrast, by specificity theory, 
learning involves getting closer to the information present 
in the world.

The Gibsons provided a simple experiment using a scrib-
bled figure of loops to show that learning involved making 
finer discriminations of the information structure in the 
stimulus. Over time, people started to notice the number of 
loops and the compression of the ovals in the scribble. The 
participants came to perceive distinctive structures that dif-
ferentiated the targeted scribble from other figures without 
any reinforcements or elaborations.

The Gibsons’ analysis is highly relevant to the trajectories 
toward routine and adaptive expertise. A routine expert does 
not need to perceive new information, because they work in 
familiar situations. To be on a trajectory toward adaptive 
expertise, people need to be prepared to perceive the new 
information that comes with new situations and ideas.

Revisiting an instructional debate

Among instructional theories, there has been a provocative 
debate between constructivist and non-constructivist advo-
cates (see Tobias & Duffy, 2009). These two traditions share 
an assumption that underestimates one challenge of the tra-
jectory to adaptive expertise—picking up new information. 
Instead, these theories emphasize going beyond the informa-
tion given (Bruner, 1973), or in the Gibsons’ terms, enrich-
ing the stimulus.

The line between the two approaches is not perfectly 
defined (Taber, 2010). As a coarse parsing, it seems that the 
family of non-constructivist teaching approaches might 
include explicit instruction that tells or shows students what 
to do and think. Whereas constructivist instruction might 
include activities through which students generate new-to-
them knowledge. As parodies, one might imagine a dark 
auditorium of college students memorizing a 50-minute 
physics lecture versus undergraduates sent to a lab to work 
in groups to rediscover theories of physics that took centu-
ries to work out. Neither extreme seems ideal.

The debate has remained unresolved for decades with 
competing meta- and rational analyses (e.g., Chi & Wylie, 
2014; de Jong, 2019; Freeman et  al., 2014; Hattie & 
Donoghue, 2016; Hmelo-Silver et  al., 2007; Schuster et  al., 
2018; Zhang et  al., 2022.) One explanation for the lack of 
convergence is the sheer number of ways to execute the two 
approaches. On the non-constructivist side, one might have 
students read a passage, listen to a lecture, follow a worked 
example, imitate a behavior, be rewarded for executing well, 
and more. On the constructivist side, students might engage 
in open-ended problems, scientific inquiry with simulations, 
making artifacts, project-based learning and more. The com-
binatoric explosion of the different tasks and psychological 
processes among all these forms of instruction is currently 
intractably large for exhaustive comparison (Koedinger 
et  al., 2013).

These otherwise competing approaches nevertheless share 
a deep assumption that influences their instructional designs. 
Learning comprises going beyond the information given. For 
example, the worked example literature, which favors explicit 
instruction, argues that discovery activities will exceed limits 
on working memory (Paas et  al., 2003). It is better to pro-
vide students with strong guidance to keep the information 
within the capacity limits of working memory. This way stu-
dents can associate the steps with one another and their 
prior knowledge. The associations are an instance of enrich-
ing the stimulus. On the constructivist side of the debate, de 
Jong (2019), defines engaged learning and directly states, 
“Central to this definition is that students go beyond the 
information that is offered to them.” (p.154).

Students do need to go beyond the given information, 
which is a reason for the common assumption. Chi et  al. 
(1994) showed that a popular textbook chapter on the heart 
only stated a fraction of the relations among heart compo-
nents. The passage would have to have been inordinately 
long to set forth all the connections. They proposed that 
self-explanation was an important strategy for going beyond 
the text information to develop a mental model of the heart.

As the Gibsons argued, going beyond the information 
given is not the only type of learning. People can learn by 
discerning new information (e.g., Goldstone et  al., 2010; 
Kellman et  al., 2010). Discerning new information is critical 
for adaptation. If there is new information, people need to 
detect it to have an adaptive response. Presumably, construc-
tivist and non-constructivist approaches to instruction would 
agree that students need to gain new information, before 
they can enrich it. Yet, with an emphasis on going beyond 
the information, exacerbated by a press toward efficient per-
formance, instruction can overlook the challenge of helping 
learners see new information in the first place. For example, 
Zhang et  al. (2022) take it for granted that people will notice 
novel information. They state “Humans have evolved to 
automatically obtain novel information either by problem 
solving or from other people. It is far more efficient to 
obtain information from others than to generate it oneself 
during problem-solving.” (p.18). While there is a novelty 
effect (Tulving & Kroll, 1995), it only takes hold if people 
recognize there is novel information, which they often do 
not. As I demonstrate below, traditional instruction does not 
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always do enough to help students learn to perceive new 
information.

The challenge of information pickup

One possible reason most traditional models of instruction 
neglect challenges in discerning information is that it seems 
non-problematic. For experts, relevant information is readily 
discerned. It can be hard to imagine that other people can-
not see it. Afterall, it is in plain view. Nathan and Petrosino 
(2003) called this the expert blind spot. The purpose of this 
section is to motivate the challenge of information pickup 
and convince the reader that it could be a real problem for 
learners.

The challenge of information pickup largely occurs 
because of an over-abundance of information. Even simple 
situations contain a large amount of information. If one 
looks at a circle, there will be information about its size, 
color, internal filling, border, location, lighting, time of day, 
and so on. It can be hard to know what is relevant until 
there is a clear purpose for its use. Consequently, people 
may encode the most general category possible—a circle. As 
a demonstration, Nickerson and Adams (1979) created 15 
variations of a U.S. penny. For example, they faced Abraham 
Lincoln to the left or the right. Despite having handled 
thousands of pennies very few people were able to discern 
which variation was the true penny. People had encoded the 
features of a penny to the least specific level they needed to 
discriminate a penny from a nickel, a dime, and so forth. 
The more specific information was unnecessary and 
unheeded.

To handle information over-abundance, people have selec-
tive attention. Selective attention leads people to see what 
they are looking for. For instance, given a new toy with 
many interactive features, infants will confine their interac-
tions to what their parents demonstrate, whereas infants 
who are not shown anything will explore and find more fea-
tures of the toy (Bonawitz, et  al., 2011). A fabulous example 
involves adults who watched a video of people tossing a ball 
to one another as the people moved about a room (Simons 
& Chabris, 1999). The participants’ task was to count the 
total number of tosses. During the video, an actor in a 
full-size gorilla suit enters the room, walks among the adults, 
and faces the camera to thump its chest. Most participants 
never saw the gorilla, because they were focused on what 
they were looking for—the number of times the ball changed 
hands. The great constructivist, Piaget (1954), described how 
children may fail to accommodate to new information, 
because they assimilate the information to their existing 
schemas. Sometimes, people miss the information altogether.

A related challenge is that novel situations are rarely so 
chaotic that people do not have an interpretation. People’s 
ability to make sense of any situation can shut down the 
search for novel information (see Alibali et  al., 2018). 
When children first see a rainbow, the new information is 
obvious, and they see it. The problem occurs when there 
are deeper structures of information that people may not 
immediately perceive. For example, the colors have a spe-
cific ordering. Blair (2009) conducted a study with children 

who had to compute distances for launching a ball and 
then they saw how far off the ball landed from the target. 
The children exhibited a stable progression. Initially, the 
children simply noticed whether their computation was 
right or wrong. Then they noticed whether their computa-
tion was to the left or right of the target. Next, they noticed 
if their computations were near or far from the target. 
Finally, they noticed the exact direction and distance their 
answer was from the target, which finally allowed them to 
design a precise computation to solve the problems. This 
progression fits Gibson and Gibson’s (1955) suggestion “… 
that the stimulation is complex, not simple, and that the 
observer continues to discover higher-order variables of 
stimulation in it” (p. 40).

Measuring adaptation to new information

Current measurement systems are predominantly designed 
to measure progress toward efficient outcomes. They evalu-
ate people’s abilities to solve retrieval, procedural, or concep-
tual problems in a sequestered format (Bransford & Schwartz, 
1999). Students do not have access to any new information 
that would enable them to learn and adapt during a test. A 
review of studies of professional experts showed that many 
studies measured experts’ abilities to handle novel problems, 
which is an important talent for adaptation (Carbonell et  al., 
2014). However, the measures had no way to capture the 
experts’ abilities to pick up new information, a key compo-
nent of adaptiveness.

Dynamic assessments provide an alternative form of mea-
surement that introduces new information as part of the 
overall assessment. Dynamic assessments can detect whether 
students are on a trajectory to adaptive expertise, because 
they can evaluate whether students can pick up the new 
information. Feuerstein (1979) introduced the idea of 
dynamic assessment in his work on intellectual disabilities. 
Rather than simply using an IQ test to measure children’s 
functioning, Feuerstein taught the children how to solve the 
kinds of problems that appear on an IQ test. Afterwards, he 
gave an IQ test to see how well they learned what he had 
taught them. He found the dynamic assessment to be more 
diagnostic of the educability of the children compared to 
just giving the IQ test straight away. He turned a measure of 
intellectual functioning into a measure of abilities to learn, 
which is closer to the aims of education.

A dynamic assessment can be conceptualized as having 
two stages. In stage one, there is the delivery of new infor-
mation from which students can learn. The three sets of 
studies described in the next section use stage one as a way 
to compare two instructional approaches. Students complete 
their initial learning in one instructional treatment or the 
other. Afterwards, they enter the first stage of the dynamic 
assessment. All the students are exposed to the same new 
information that is relevant to, but goes beyond, their orig-
inal instruction. Did the initial instructional conditions dif-
ferentially prepare the students to pick up the new 
information?

Stage two of the dynamic assessment measures whether 
students use what they may have learned from stage one. In 



6 D. L. SCHWARTZ

the following studies, there are two types of measures in the 
second stage. One form measured student progress on the 
efficiency dimension. Could the students solve problems that 
were similar to the forms of instruction and problems they 
had already received? For example, could they compute an 
answer or recall a fact? The second type measured progress 
along the adaptive trajectory. These were measures of spon-
taneous transfer, because they did not provide overt cues 
that students’ prior learning could be adapted to the new 
situation. For example, could students make accurate predic-
tions about a novel situation they had never encountered 
before, but contained new information that was relevant to 
what they learned in the first stage of the dynamic 
assessment?

Combined, the two stages of the dynamic assessment can 
be used to create a double measure of adaptiveness: Do stu-
dents pick up new information to learn, and do they use 
that information to help further discern what is important 
in a new situation?

The effects of instruction on efficient and adaptive 
outcomes

The studies in this section evaluated ways of putting stu-
dents on a trajectory toward adaptive expertise. I present 
results from the control and experimental conditions, but I 
focus the explanation on the results of the control condi-
tions. They demonstrate how hard it can be to achieve an 
adaptive learner using relatively traditional forms of instruc-
tion. The control conditions, which look fine by measures of 
efficiency, are manifestly low on dynamic assessments of 
adaptiveness. By calling the control conditions, “traditional 
forms of instruction,” I simply mean they are relatively com-
mon instances of instruction, which should be familiar to 
most readers.

Preparing to learn from lectures

The instructional goal of the first set of studies (Schwartz & 
Bransford, 1998) was to help university students learn eight 
behavioral findings about memory and their explanations 
(e.g., primacy, recency). We chose a control condition that 
is a prevalent form of instruction in higher education, where 
students first summarize an expository treatment before 
receiving the class lecture. In this case, the students wrote a 
2-page summary of a chapter specifically written to describe 
the eight memory findings and their interpretations.

In the treatment condition, students graphed simplified 
raw data from classic experiments that exemplified the key 
memory concepts (a superb idea suggested by my doctoral 
advisor, John Black). They read a description of the different 
experimental conditions (e.g., immediate versus delayed 
recall). Their task was to graph whatever they thought were 
the important patterns in the data. They did not receive a 
rationale for the different experimental conditions, though 
we presumed they would think about them. The graphing 
and summarizing activities took roughly the same amount 
of time.

By looking at the graphs and the summaries, it was pos-
sible to code how many of the eight memory phenomena 
the students captured in these initial learning activities. The 
rates were nearly identical across the conditions. On the 
surface, it appeared that students had equal encoding of the 
key ideas regardless of the instructional activity.

Next, all the students received a common lecture that 
reviewed the empirical findings and presented the relevant 
theories. This lecture was the first stage of the dynamic 
assessment. About a week later, we measured what the stu-
dents had learned. This was the second stage.

One post-lecture measure gave a true-false test on each of 
the memory concepts. For example, “For a list of words, 
people tend to remember the first words at a higher rate 
than the other words. True or False.” Performances across 
conditions were nearly identical. They were also nearly 100% 
correct indicating that the students had learned all eight 
concepts regardless of what they had captured in their sum-
maries or graphs. By this efficiency measure of correct recall, 
it appears that students had equal encoding and retrieval 
across the conditions.

The finding relevant to adaptiveness occurred on a spon-
taneous transfer measure called the “prediction task.” The 
students received the description of an experiment, and they 
had to predict the results. The prediction task was designed 
such that all eight memory concepts were applicable. Table 1 
shows the probabilities that students made a prediction 
using one of the memory concepts. The left-hand column 
shows the probability of using a memory concept on the 
prediction task when a student had noted the memory phe-
nomenon in the graph or summary they produced prior to 
the lecture. Graphing the cases and then hearing the lecture 
nearly tripled the rate of transfer compared to writing a 
summary and hearing the exact same lecture.

The right-hand column of the table shows the probabili-
ties that students would use a memory concept in the pre-
diction task that they did not notice during the graphing or 
summary task. Did they pick up the missing information 
from the lecture? The students in the summary conditions 
learned very little from the lecture that they were able to use 
in the prediction task. This was not the case for the students 
in the graphing condition. They had a four-fold higher 
probability of using an idea presumably gained from the lec-
ture than the summary students.

Mapping these results into Figure 1, summarizing a pas-
sage put students on Path R. These students learned enough 

Table 1. Probability students would make a prediction conditional-
ized on whether they noted or missed a concept in their pre-lecture 
activity (schwartz & Bransford 1998).

Probability of prediction based on a memory concept

noted in initial 
instructional 

activity

Missed in initial 
instructional 

activity

Exp a.
summary + lecture .26 .11
graphing + lecture .74 .44

Exp. B
summary + lecture .23 .06
graphing + lecture .60 .26
graphing + graphing .18 .15
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from the summary plus the lecture to do well on memory 
tests of what they had read and been told. However, the sum-
marizing activity did not prepare the students to apply their 
knowledge to make predictions about a novel scenario. When 
these students had not identified a memory phenomenon 
during the initial summarizing activity, they had a negligible 
probability of picking up the relevant information from the 
lecture such that they could apply it to make predictions. In 
short, the lecture was relatively useless for preparing them to 
adapt. One may speculate that the summary students suffered 
from selective attention—during the lecture they paid atten-
tion to what they already knew from the summarizing activity. 

It is important to note that the lecture per se is not 
responsible for the result. Experiment B, shown in the lower 
half of the table, included a condition where the students 
graphed the data a second time instead of hearing the lec-
ture. The bottom row shows that they did poorly at the pre-
diction task, even when they had noted the relevant memory 
phenomena in their graphing activity. The lecture was 
important for helping students adapt.

The students in the graphing plus lecture conditions were 
both effective on the tests of efficient memory and at adapt-
ing to the novel prediction task. The combination of the 
innovation experience of trying to notice and render pat-
terns from the data coupled with the subsequent lecture 
appears to have put the students on Path A.

Preparing to learn from worked examples

The next studies used a worked example as the target learn-
ing opportunity (Schwartz & Martin, 2004). Worked exam-
ples are effective for helping students learn procedures 
(Cooper & Sweller, 1987). A verbal explanation of the pro-
cedural steps further helps students make associations that 
enrich their learning. By themselves, however, worked exam-
ples may not prepare student to adapt.

This pair of studies occurred with 9th-grade students 
who completed a 6-hour curriculum on statistical variability 
(Schwartz & Martin, 2004). Overall, the students learned 
quite well. At a one-year delay, the high-school students per-
formed better on a variety of assessments compared to 
undergraduates who had taken a semester of statistics.

The experimental manipulations involved the final exam 
and one hour of the total instruction. After several days of 
joint instruction, the students separated. Half of the students 
were placed in a traditional Tell-and-Practice condition. 
They received a lesson that showed how to compare perfor-
mances graphically across two different distributions, for 
example, high jump and long jump. The students then 
received a table of data and followed the same procedures to 
solve a new problem.

The other students were placed into an Invention condi-
tion. These students were presented with a similar problem 
scenario and the accompanying data. They tried to “invent” 
their own methodology for comparing the scores, which no 
one did very well. As smartly coined by Kapur (2014), these 
students had a productive failure. Despite their failure to 
produce the canonical solution, they were prepared for 
future learning (Bransford & Schwartz, 1999).

The second factor manipulated whether students had an 
opportunity to learn how to compute z-scores to compare 
across distributions. In the middle of the final exam, half of 
the students in each condition received a worked example. 
Following the example, the students’ task was to follow the 
worked example to compute a specific value with a new data 
set. Overall, 92% of the students were able to solve the sub-
sequent problem with no treatment differences. Thus, by 
this measure of efficient outcomes, students in both condi-
tions learned enough from the in-test worked example to 
replicate what they had been taught.

The other half of the students did not receive the worked 
example and its following problem. Their importance is for 
a measurement at the very end of the exam. All the students 
received a transfer question that asked them to compare 
performances across history (e.g., who was the better 
homerun hitter?). The question was whether students who 
received the worked example in the test would transfer its 
solution to help solve the new problem.

Table 2 exhibits the key finding in the rows for the 
Tell-and-Practice conditions. Based on the transfer measure, 
the Tell-and-Practice students learned nothing from the 
worked example compared to the Tell-and-Practice students 
who never received it. In contrast, the Invention students 
who received the worked example more than doubled the 
performance of otherwise similar Invention students who 
did not receive this learning opportunity. The Tell-and-
Practice students did not pick up critical information from 
the worked example, whereas the Invention students did.

It seems unlikely that worked examples always fail to pre-
pare students to learn from a second related example. In the 
current case, students could readily form an interpretation of 
the worked example that prevented them from seeing the new 
information it contained. The worked example in the test was 
highly related to what the Tell-and-Practice students had cov-
ered in class—they both involved comparing unlike outcomes 
using deviation units. Students may have thought they learned 
the main lesson in the classroom activity. For the worked 
example in the test, they focused on the information for com-
pleting the procedure rather than noticing what was new; 
namely, the ability to compute a specific z-score.

Preparing to learn from visual materials

My interpretation of the prior studies is that traditional 
instruction did not solve the challenge of information pickup, 

Table 2. Percent of students who gave a workable solution on the 
target transfer problem by instructional treatment and learning oppor-
tunity (schwartz & Martin, 2004).

Percentage of students who succeeded on 
target transfer problem

test with worked 
example

test without 
worked example

Experiment a
tell-and-Practice 29% 32%
invention 61% 30%

Experiment B
tell-and-Practice 22% 27%
invention 46% 18%
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which led to a lack of adaptiveness. The next pair of studies 
provides a more direct test of this interpretation by directly 
measuring what information students picked up from a 
visual worksheet.

The instructional goal of the study was to help 8th-grade 
students gain a deep understanding of ratio and proportion 
in the context of physical quantities (Schwartz et  al., 2011). 
Density is the ratio of mass over volume, and speed is the 
ratio of distance over time. Ratio and proportions are big 
ideas that run throughout middle-school. In a Tell-and-
Practice condition, 8th-grade students received a sheet with 
an explanation of density, examples, and lessons on how to 
compute it. In the Invention condition, students received a 
sheet with instructions that explained their task was to fig-
ure out how to make an index to compare crowdedness. The 
students then received the Crowded Clowns worksheet in 
Figure 2. In the figure, a given company uses the same ratio 

of clowns to bus compartments for each instance (i.e., the 
same density). The Tell-and-Practice students recognized 
this as a practice sheet for what they had been taught, 
whereas the Invention students were left to figure out how 
measure crowdedness.

Students worked in small groups in their respective con-
ditions to find the crowdedness used by each of the compa-
nies. The next day, the students received a blank sheet of 
paper. Individually, their task was to redraw the Crowded 
Clowns worksheet from memory. Chase and Simon (1973) 
effectively used a redrawing measure to help evaluate what 
chess masters encoded from game boards compared to nov-
ices. Here, the question was whether the students encoded 
the ratio structure of density within each company. Borrowing 
from the analogy literature (e.g., Gentner et  al., 2003), we 
called this the deep structure, because it is the relation of 
two features that defines each company rather than the 

Figure 2. the crowded clowns worksheet students received (From schwartz et  al., 2011, Figure 1).
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number of clowns or busses alone. In the language of per-
ceptual learning, it would be called an invariant under trans-
formation. The invariant is the ratio structure, and the 
transformation is the differences in the ratio across the com-
panies. We also evaluated student recall of surface features 
incidental to the density of the clowns (e.g., dotted versus 
solid lines). Figure 3 shows examples of drawings that 
include deep structures and surface features.

The Invention students redrew roughly 50% more of the 
deep structures than the Tell-and-Practice students. In 
Experiment A, the percentages were 52% for the Tell-and-
Practice condition and 76% for the Invention condition. In 
Experiment B, the percentages were 38% for the Tell-and-
Practice condition and 59% for the Invention condition. 
This difference was not due to generally poorer encoding. 
Students across the conditions encoded similar numbers of 
surface features.

The favored interpretation is that many of the Tell-and-
Practice students never perceived the ratio structure that is 
defining feature of density. Instead, they focused on effi-
ciently executing the taught procedures rather than looking 
for novel information they never knew existed.

Students then completed more activities in their respec-
tive conditions, for example on speed. After several days, 
they received a common lecture on ratio-based quantities 
that showed how all the examples shared the property of 
ratio. They then practiced on word problems by computing 
density, speed, and so forth. Weeks later the students received 
a test of efficiency on the routines for computing and using 
ratios of physical quantities. The conditions performed sim-
ilarly with good accuracy. Thus, the Invention activities did 
not come at the expense of efficient knowledge, and the 
Tell-and-Practice students did well on measures of the effi-
cient application of what they had been taught.

Students also received a new situation that also involved 
ratios—the spring constant (mass over distance stretched). 
Students were asked to find the stretchiness of trampolines. 
The students in the Tell-and-Practice condition were 50% 
less likely than the Invention students to characterize stretch-
iness as a ratio of mass over distance. Instead, these students 
were more likely to use a single dimension, such as the dis-
tance stretched or the mass on the trampoline. They were 
not prepared to learn from the information embedded in the 
novel situation.

Interestingly, students in the lower half of the achieve-
ment distribution showed the greatest benefit of the Invention 
condition. They were four times more likely to adapt to the 
trampoline problem than their lower achieving peers in the 
Tell-and-Practice condition. This contradicts the common 
intuition that one should just tell lower achieving students 
what to do in the hopes they become more efficient. It may 
be better to let them innovate during early learning so they 
can solve the challenge of information pickup (see also Roll 
et  al., 2018).

Summary of the three studies

Across three sets of studies seven years after each other 
(Schwartz & Bransford, 1998; Schwartz & Martin, 2004; 
Schwartz et  al., 2011), students who received traditional 
forms of instruction were poorly prepared to pick up new 
information and adapt. In the first stage of a dynamic 
assessment, they were presented with new information in 
the form of a lecture, worked example, or visual material. 
They gained enough from these sources of information to 
succeed on measures of efficient application. They did not 
pick up information that prepared them to adapt to a novel 
problem at transfer. In the studies on learning from a lecture 
and worked examples, the students appeared to learn nearly 
nothing they could subsequently use to handle novel prob-
lems. In the studies on learning about ratios, many of the 
students failed to recognize the presence of ratios, even 
though they had been explicitly and repeatedly told how to 
find and compute them. They were on Path R toward rou-
tine expertise.

These studies are existence proofs that provide a caution-
ary tale. The way students are taught initially can have 
meaningful downstream consequences for their abilities to 
learn and adapt their knowledge in the future. We do not 
know conclusively if the traditional instruction failed to set 
the stage for adaptation, or whether it actively suppressed it. 
Studies by other scholars have demonstrated that early learn-
ing can interfere with future learning (e.g., Hallinen, 2015; 
Luchins, 1942). It could be interesting to conduct studies to 
examine this question, for example, by directly having stu-
dents hear the lecture on memory without first completing 
the summarizing activity.

The pull toward routine efficiency

The three sets of studies supported the proposal of Path R 
in Figure 1. Instruction that emphasizes efficiency from the 
outset can put students on a trajectory toward routine exper-
tise. In this section, I move away from grand theories to a 
level of analysis closer to the moment-to-moment experi-
ences of learners, which may help to explain why the stu-
dents in the traditional instruction did fine by efficiency 
measures of learning but not adaptive ones. In turn, this 
analysis helps to inform the subsequent section, which 
describes four principles for the design of experiences that 
start people on the path to adaptive expertise.

Natural forces draw people toward efficiency instead of 
unforced adaptation. The neuroscience literature includes 

Figure 3. Examples of student drawings. the examples are coded by whether 
they exhibited the deep ratio structure and surface features. low structure 
drawings did not exhibit proportionate ratios for a company (From schwartz 
et  al., 2011, Figure 5).
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many demonstrations that learning something unfamiliar 
depends on increased brain activation, whether measured by 
amplitude, duration, or overall recruitment of brain regions 
(Race et  al., 2009). In contrast, the simpler act of remember-
ing something increases efficiency for subsequent recall 
(Grill-Spector et  al., 2006). From an evolutionary perspective, 
it makes sense that people would optimize on routine efficien-
cies rather than expend energy for a future that may never 
come. It is less biologically demanding to rely on knowledge 
one has already constructed than to generate new knowledge. 
Remembering is often easier than learning something new.

Of course, people do learn new things, and they do adapt 
to new environments. The drive toward cognitive savings is 
not absolute. Nevertheless, many educational settings create 
performance demands and knowledge organizations that 
play into people’s tendency toward an efficiency trajectory.

Social factors create performance demands. Whether in the 
form of scripts or reward functions, situations of learning 
define the performance demands that shape people’s effort. 
Students will optimize for the efficient retrieval of facts and 
procedures when classroom scripts and tests emphasize the 
replication of what one has learned. A telling example of stu-
dents expecting efficiency-oriented performance demands 
comes from Taylor and his colleagues (2010). He developed a 
series of brainstorming tasks for his undergraduate biology 
class. For instance, students receive the scenario of rubber 
ducks spread across a swimming pool. Their task was to 
devise a method for getting all the ducks to the center of the 
pool without touching them. The scenario is an analog of the 
problem that cells solve when they bring distributed materials 
to the nucleus. I asked Taylor why the lesson took a detour 
to rubber ducks instead of the true cellular scenario. He told 
me he had tried to give the problem in the authentic biolog-
ical context, but the students complained that he had not 
taught them the answer yet. Evidently, the students were used 
to problem-solving scripts in which learning was optimized 
for reusing what one had previously studied. Taylor et  al. 
(2010) showed that by the end of his course the students 
improved in their spontaneous tendency to construct models 
to explain phenomena. They changed the optimization func-
tion, so students were becoming more innovative at creating 
their own explanations.

Psychological factors of knowledge organization also create 
challenges for seeking out new information. Ideally, people 
would self-detect that their knowledge could be improved by 
new information, even if they are giving correct answers. The 
organization of knowledge can make this difficult. For exam-
ple, cognition “chunks” knowledge into ever more efficient 
consolidations (Anderson, 1982). These chunks can become 
black boxes that are difficult to decompose to reveal gaps and 
inadequacies (Slovic et  al., 1972). More relevant to learning, 
educational materials often deliver relatively abstract chunks 
of propositional knowledge to start with. Students may not 
consider the details that go into those chunks, especially when 
the abstractions appear sufficient.

A relevant finding comes from Rozenblit and Keil (2002) 
who found that people over-estimate their explanatory 
knowledge, which they neatly termed The Illusion of 
Explanatory Depth. The account goes something like this: 

People learn a high-level description of a system. They take 
this description as sufficient, without appreciating that they 
do not understand the operation of the sub-systems that 
make the system possible. For instance, they might believe 
they understand automotive brakes, because they know that 
brakes use friction to slow down the wheels. They never 
think about the pistons, cables and fluid that make this pos-
sible, because they believe they know how the system 
works—through friction.

A concrete example of people’s tendency to stick with 
efficient summary abstractions comes from a study on ver-
bal and embodied knowledge (Schwartz & Black, 1996). 
Participants heard problems about touching gears. For exam-
ple, Five gears are in a row. If one turns the gear on the 
farthest left clockwise, what happens to the gear on the far-
thest right. Participants completed a series of problems using 
different numbers of gears; 4, 3, 7, 6, 5, 9. At first people 
used their hands to model the problems by making various 
turning gestures. Eventually, they induced the abstract parity 
rule: Odd gears turn the same direction and even gears turn 
the opposite direction. Once they had the parity rule, they 
stopped gesturing. They had developed an abstract level of 
knowledge which generated very fast and correct answers.

In the second half of the study, participants received a 
new set of questions: Five gears are arranged in a circle, so 
that each gear is touching its two nearest neighbors. If one 
tries to turn the gear on the top clockwise, what happens to 
the gear just to its left?” The typical participant response 
was, “It will turn clockwise,” using the parity rule for five 
gears. The experimenter then said, “That is wrong.” 
Participants then said, “Counter-clockwise,” using the parity 
rule for two gears or just guessing the opposite. The exper-
imenter then said, “That is wrong.” After some confusion, 
participants started to model the system with their hands 
again. Eventually, they discovered that odd numbers of gears 
in a circle lock. It took an overt failure for people to let go 
of their efficient abstractions and reengage the more labori-
ous gestural simulation to generate new information.

Combined, performance demands and knowledge organiza-
tion may explain why the control students in the studies did 
fine on routine tasks. They could solve computation problems 
and correctly judge statements about memory phenomena. Yet, 
they did not learn enough from the common lecture or 
worked examples to apply their knowledge to novel situations. 
The students were optimizing for the kinds of performance 
demands that many classrooms assess—cued retrieval tasks. 
The students were also content with the abstract level of 
knowledge they learned and there was no reason to seek new 
information. As the studies on learning ratio demonstrated, 
students often did not see that there was more information to 
be had, presumably because the abstract efficient knowledge 
they had—how to divide to get an answer—appeared sufficient.

Innovation activites for achieving an adaptive 
learner

A classroom environment that rewards efficient replication 
coupled with a psychological tendency toward “good 
enough” abstractions will not place students on Path A in 
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Figure 1. Path A proposes putting students on an 
innovation-first trajectory. The purpose of the innovation 
path is not for students to discover efficient solutions on 
their own. Instead, innovation tasks help skirt the pull 
toward efficiency while also yielding the key side-effect of 
addressing the challenge of information pickup. As the 
three sets of studies demonstrated, students can learn effi-
cient solutions and theories through traditional instruction 
and without being trapped on Path R, if they engage in 
innovation tasks first.

The staircase of Path A should not be taken too literally. 
For example, there can be variations in the lengths of the 
line segments. Moreover, one might introduce some efficient 
knowledge to the students during an innovation task, for 
example, by giving a tip or showing why a solution will not 
work. Conversely, one might still ask students to solve “what 
if ” problems during a predominantly efficiency-oriented 
task. Nevertheless, there are broad differences for how to 
establish the innovation segments of Path A. Loibl et  al. 
(2017) provide a review of general instructional features of 
initial problem solving that support subsequent learning 
from a lecture. Kapur (2014) provides a comparison of the 
productive features of generative learning and explicit 
instruction. Here I focus specifically on four principles that 
guided the design of the innovation-first treatment condi-
tions from the above studies. There are surely other effective 
approaches for putting students on Path A. For example, 
Arena and Schwartz (2014) created a videogame using the 
play pattern of the old videogame Space Invaders to help 

students discern properties of distributions. This prepared 
them to learn from a lecture on randomness.

To anchor the discussion, Figure 4 provides a representa-
tive task for introducing students to variance (cf. Schwartz 
& Martin, 2004). The cover story is that companies produce 
pitching machines. Companies need to label the consistency 
of their machine. A professional baseball player might want 
to buy a machine that is inconsistent. The parent of a 
younger child might want to purchase a consistent machine. 
The students’ task is to innovate a way to compute a reli-
ability index that can rate each machine.

For Figure 4, there was some art in choosing a topic 
where students would have sufficient intuitions to meaning-
fully engage the problem (e.g., consistency of baseball 
pitches); where they could generate multiple solution paths 
from relatively routine sources of prior knowledge (e.g., 
arithmetic); and, where the total number of cases was nei-
ther too many nor too few (e.g., six cases for four contrasts). 
I have not tried to theorize how to make these artful deci-
sions, although this would be an excellent thing to do (e.g., 
Ashman et  al., 2020). Instead, I highlight the four 
over-arching principles that distinguish this task from more 
traditional forms of instruction.

Ideally, the reader would consider Figures 2 and 4 
together to pick up the relevant information in the examples 
and try to induce the four principles. By hypothesis, this 
would prepare the reader to learn from the following expla-
nation more deeply and then subsequently use that learning 
in new contexts, for example, when trying to adapt the 

Figure 4. a representative innovation task. students receive instructions that state: here are six grids showing the results from six different baseball pitching 
machines. Each dot shows where a pitch landed. the X in the center shows the target. your task is to invent a procedure for computing a reliability index for 
each of the pitching machines. there is no single way to do this, but you must use the same procedure for each machine to make it a fair comparison between 
the machines. Write your procedure and the index value you compute for each pitching machine.
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instruction for a lesson on modern poetry. Of course, I 
appreciate that this is too much to expect of the gen-
tle reader.

I have organized the four principles by the two in situ 
factors that might otherwise put students on Path R. One 
factor is the implied performance demands, and the other 
factor is the desired knowledge organization. I will focus on 
how the four principles help address these factors while also 
providing some practical advice for implementation. The are 
likely other positive outcomes that come with the four prin-
ciples, such as a mindset for innovation. And, of course, 
there may be negative outcomes too.

Innovation performance demands to resist an efficiency 
default

Encourage innovation
Students are told that their task is to innovate their own 
representations and methodologies. One of the main conse-
quences is that students will explore the situation to find 
information and structure. It is different from a performance 
demand to achieve a correct answer by replicating prior 
instruction efficiently.

I use Figure 4 in my introductory PhD statistics class (the 
full semester of materials through F-tests may be requested). 
Many of the enrolled doctoral students have taken a statis-
tics course and they often try to shortcut innovation by try-
ing to remember the formula. They search their prior 
knowledge rather than noticing the critical information in 
the problem situation. They are porting a performance 
demand that would put them on a trajectory to routine 
expertise. I ask them to resist the urge to look up their old 
formulas and instead try to figure out how to do it. After a 
few stairsteps of innovation followed by subsequent lectures 
and practice, students begin to recognize the innovation 
tasks as a useful, and typically enjoyable, way to learn.

Prevent early closure
People often just want to be done (Chin et  al., 2019; 
Csikszentmihalyi & Getzels, 1970). In school, students can 
believe their task is to produce the correct answer and 
achieve closure. Early closure ends the search for new infor-
mation. For the task in Figure 4, students rarely generate a 
foolish approach. They often come up with a reasonable 
partial solution. The risk is that they think they are done 
with their first solution and stop looking for other import-
ant information.

In practical experience, students need to work on prob-
lems like Figures 2 and 4 for 20- to 30-minutes to gain the 
benefits. Students do not need to discern all the information 
to benefit from the innovation activity. Nevertheless, the 
more they discern the better. Stopping after five minutes 
prevents them from picking up much of the relevant 
information.

One solution is to have students work in small groups of 
three or four students. Different students in the group often 
begin with a different pitching grid and each favors a differ-
ent approach. Sharing across their solutions helps to keep 

the effort moving forward, which is one reason it is good to 
create a task that supports multiple solution approaches. A 
common refrain from one student to another is, “But how 
about this one? Does your solution work for it too?” Another 
instructional move is to walk around the room and generate 
an instance on the fly that the students’ solution cannot 
handle, and they need to address. With advances in artificial 
intelligence, it should be possible to generate cases automat-
ically in response to a student’s proposed solution (Blair & 
Schwartz 2004).

Psychological supports for seeing beneath an 
abstraction

Include contrasting cases
Tasks that provide variation across a set of instances can 
help people discern precise informational structures. The 
inclusion of contrasting cases, like paint chips at the hard-
ware store, can help people notice important dimensions of 
variation (Biederman & Shiffrar, 1987; POGIL instruction, 
Trout et  al., 2008). When students contrast different pitching 
grids against each other, they notice properties of statistical 
distributions that the expert formulas were designed to han-
dle. For instance, many students draw a line around the dots 
in Figure 4a. From there, they compute the area or perime-
ter. Figure 4e, however, alerts them to consider the density 
of the distribution, because a perimeter solution gives the 
same answers for Figure 4a and 4e despite their obvious dif-
ferences. The Crowded Clowns worksheet in Figure 2 also 
includes targeted variation that alerts students to look 
beyond the surface. For example, the first and third compa-
nies each have an instance with two clowns. Ideally, this 
alerts students to the fact that they cannot just count the 
number of clowns to solve the problem.

Figures 4 and 2 provide contrasting cases for students. 
They do not depend on students generating their own infor-
mative data. There is an important place for learning the art 
of experimental design. However, these innovation tasks do 
not count on novices being experts at inquiry and gathering 
useful data. It is up to the instructional designer, perhaps 
with the help of a domain expert, to generate optimal con-
trasting cases.

One method for selecting contrasting cases begins with 
the target theory or formula. One can make contrasts to 
highlight quantities or relations that are captured by key 
variables and operations in the formula. For example, the 
standard deviation formula divides by n. Figures 4a and 4d 
make a contrast on sample size, which sets up the explana-
tion that dividing by n handles sample size differences by 
taking averages. Figure 4c helps students consider the refer-
ence value for evaluating variability, which motivates why 
the standard deviation formula subtracts the data points 
from their own mean rather than a fixed reference value 
(such as the target X in the grids). When moving onto sub-
sequent topics, such as Z-scores (i.e., measuring distances in 
standard deviation units), it is unnecessary to make con-
trasts on sample size, because students have already learned 
to pick up this information. Instead, contrasts on spread and 
centroids set up the Z-score formula.
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Encourage a unifying account
Students should try to innovate a single account that works 
for all the cases. This can help them discern more complex 
information structures. For Figure 4, students need to come 
up with a single way to compute a reliability index that cov-
ers all the cases. For Figure 2 they need to come up with a 
single way to compute a crowdedness index. Ultimately, this 
is what the efficient solution or theory needs to accomplish. 
Working toward that goal may better prepare students to 
appreciate the solution when it is delivered.

Ideally, students would naturally seek a unifying account 
across a set of instances. Afterall, many of the ideas taught 
in school are intended to be general truths that span many 
instances. However, students may be more focused on effi-
ciently solving the next problem, which yields piecemeal 
understanding tied to specific instances. A telling example 
comes from a study that gave college students a set of 12 
patient cases on paper that described symptoms and diagno-
ses (Martin & Schwartz, 2009). Their task was to use these 
cases to help them diagnose computerized patients. Nearly 
every advanced student in a STEM field used the 12 cases 
to create a representation that would help solve future cases. 
For example, some made a table that had symptoms in the 
columns and diseases in the rows, and they would put 
checks in the appropriate boxes based on the 12 original 
cases. These students made a prospective adaptation by cre-
ating a unifying representation before they turned to diag-
nose their first computerized patient. In contrast, early 
undergraduates never organized the information in the orig-
inal 12 cases to discern the underlying symptom structure. 
Instead, they flipped back and forth among the original 12 
cases for each new computerized patient. They solved each 
problem individually.

Students may not realize they should expend the effort to 
come up with a general account that can handle the next 
case down the line (Rittle-Johnson & Star, 2007; Shemwell 
et  al., 2015). Maloney (1988), investigating the learning of 
projectile motion, stated that student “rule usage was quite 
flexible with essentially no consideration of the fact that all 
of the situations involved the same type of motion. That is, 
the subjects seemed to treat each situation as unique with 
no need to correlate a rule on one task set with the rules on 
related tasks sets” (p. 511). As Gentner et  al. (2003) con-
cluded from their studies on analogical encoding, “learners 
cannot be counted on to spontaneously draw appropriate 
comparisons, even when the two cases are presented in close 
juxtaposition” (p. 403). Hence, the fourth principle creates 
the explicit goal of developing a unifying explanation across 
the cases (also see the MORE Thinking Framework, Trout 
et  al., 2008).

Working toward a unifying account has two primary ben-
efits for the challenge of information pickup. First, encour-
aging a unifying account provides a goal that helps students 
discern which information is relevant. Given the overabun-
dance of information, it is hard to know what information 
is important without having a purpose in mind. The push 
toward a unifying account helps students consider what are 
incidental surface features they can set aside. It also encour-
ages students to discern novel-to-them information 

structures that may not be apparent at first glance. To the 
point, in a study by Chin and colleagues (Chin et  al., 2016), 
students received a set of contrasting cases involving projec-
tile motion. In the innovation condition, the students had to 
come up with a way to predict an outcome for any case they 
might receive in the future, which was a way to motivate a 
unifying account across these and any other cases. In a 
compare-and-contrast condition, students received instruc-
tions to list similarities and differences across the cases. The 
compare-and-contrast students tended to list single dimen-
sions that were familiar to them—distance, height, and 
speed. The innovation students combined dimensions into 
new quantities that reflect relations among variables (e.g., 
speed x height). They were more likely to pick up complex 
informational structures when asked to make a unifying 
account.

Second, the push toward a unifying account also provides 
a relatively natural way for students to self-correct their 
ideas by picking up more information. Students often gener-
ate a possible solution to handle a subset of cases. Afterwards, 
they look at additional cases and ask themselves, “Does my 
approach work for all the cases?” For example, does the 
perimeter solution for Figure 4a handle the denser distribu-
tion in Figure 4e? The task to make a unifying account pro-
vides a way for them to monitor their own knowledge and 
avoid the illusion of explanatory depth because they pick up 
information that puts their ideas to test.

Conclusion

One function of schooling should be to prepare students to 
continue learning so they can adapt to changing times and 
knowledge bases. The goal of adaptiveness requires special 
instructional considerations, because it runs into the chal-
lenge of information pickup; namely, people may never see 
what is new, and if they do not see what is new, they cannot 
adapt. Many current models of instruction and assessment 
overlook the special demands of information pickup. Three 
sets of studies demonstrated how instruction that does not 
address the challenge of information pickup was ineffective 
at preparing students to pick up new information. The stu-
dents did learn when measured by sequestered tests of effi-
cient retrieval and execution of prior knowledge. But the 
students from middle-school, high-school, and college 
showed little adaptation to new information provided in 
subsequent learning opportunities such that they could then 
adapt to a novel problem. A potential cause of the failure to 
pick up new information was the combination of perfor-
mance demands and natural cognitive factors that drive peo-
ple to rely on known efficiencies rather than appreciate new 
ideas and possibilities. The pull toward exploiting what one 
knows can prevent exploration of what one does not.

Early learning can start by engaging students in the phe-
nomena. Asking them to innovate their own solutions drives 
them to pay closer attention to the situation. Afterwards, 
they can receive instruction that emphasizes efficient expla-
nations and solutions, because they will be better prepared 
to learn from all they contain. Four instructional design 
principles can help students engage in innovation tasks to 
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support the pickup of new information. Two principles 
addressed introducing performance demands that move stu-
dents away from the common press toward efficiency: (1) 
Explicitly indicate to the students that the task is to innovate 
rather than recapitulate; (2) Help students resist the urge 
toward an early closure that ends learning. Two more design 
principles addressed creating tasks that support information 
pickup rather than memorization of abstractions: (3) Provide 
contrasting cases that hold targeted variation; (4) Ask stu-
dents to make a unified account that handles the variation 
of the instances.

There are limitations to the research and claims I have 
presented. One limitation is a question of generality. The 
studies all emphasized learning in STEM domains, and it is 
unknown whether the findings generalize beyond the chosen 
topics and student populations. A second limitation involves 
the four design principles. My untested hypothesis is that 
these four ingredients work together and must be in play 
simultaneously to prepare students for future learning. For 
example, I doubt there will be much success in telling stu-
dents to be innovative without providing a task that includes 
relevant information plus a clear goal. Similarly, providing 
contrasting cases with relevant variation will not work with-
out the directive to innovate a unified account (Chin et  al., 
2016). The combinatorics of testing every possible combina-
tion of the four principles is prohibitive. Instead, one might 
conduct a “leave one out” study, where each condition ablates 
one of the four principles, and these reduced treatments are 
all compared to a condition that includes all four ingredients.

Another limitation is that I have not described the pre-
cise conditions when an educator should choose to use an 
innovation activity versus an efficiency activity. Presumably 
this depends on students’ prior knowledge and abilities to 
discern relevant information. One might pursue an empirical 
approach to decide when to use an innovation activity. For 
example, show students a situation, wait an hour or so, and 
ask them to redraw it. If the students miss important infor-
mation structures in the redrawing, then an innovation 
experience would be appropriate. More generally, if there are 
concepts where students exhibit regular misconceptions or 
difficulties year after year, an innovation experience could be 
helpful. With the development of more sophisticated com-
puter technologies, one might imagine that an instructional 
technology could embed assessments that help the system 
decide whether a student needs an innovation experience or 
whether an efficiency experience would be better placed.

Finally, the presented studies were relatively short and 
confined to classrooms. Are the findings relevant to life 
beyond a given class? A compelling example comes from 
engineering professor, Noe Lozano, who took special respon-
sibility for mentoring first-generation Latine engineering 
undergraduates. Lozano described the case of one young 
woman. In her first required STEM course, she did very 
badly on the mid-term exam. She must have been at the top 
of her high-school class to achieve admissions to the elite 
university. Being a committed student, she studied even 
harder for the next exam. Yet again, she did poorly. This 
triggered a cascade of self-doubt, including whether she 
belonged. I asked if this was a common story. He said, “Yes.” 

When I asked why the student still did badly on the second 
test, he told me she had excelled in high school because she 
had learned how to “regurgitate information,” and the col-
lege exams demanded more. I asked my colleague if she 
recovered from this first university experience. He said many 
of the students give up on their planned STEM careers after 
this typical experience, as did this young woman. He also 
said that for those who stick with it, it takes them about two 
years to adapt and regain their feelings of competence. I can 
only wonder if a different model of instruction in secondary 
school and college might have helped these talented students 
more easily achieve becoming an adaptive learner to pursue 
their dream trajectories to expertise.
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